完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, I-Chenen_US
dc.contributor.authorPeng, Jen-Yuen_US
dc.contributor.authorLin, Chao-Chihen_US
dc.contributor.authorTsai, Ming-Hanen_US
dc.date.accessioned2014-12-08T15:11:53Z-
dc.date.available2014-12-08T15:11:53Z-
dc.date.issued2011-04-01en_US
dc.identifier.issn1077-2626en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TVCG.2010.87en_US
dc.identifier.urihttp://hdl.handle.net/11536/9111-
dc.description.abstractIn this paper, we present a representation method for motion capture data by exploiting the nearly repeated characteristics and spatiotemporal coherence in human motion. We extract similar motion clips of variable lengths or speeds across the database. Since the coding costs between these matched clips are small, we propose the repeated motion analysis to extract the referred and repeated clip pairs with maximum compression gains. For further utilization of motion coherence, we approximate the subspace-projected clip motions or residuals by interpolated functions with range-aware adaptive quantization. Our experiments demonstrate that the proposed feature-aware method is of high computational efficiency. Furthermore, it also provides substantial compression gains with comparable reconstruction and perceptual errors.en_US
dc.language.isoen_USen_US
dc.subjectThree-dimensional graphics and realism-animationen_US
dc.subjectCompression (coding)-approximate methodsen_US
dc.titleAdaptive Motion Data Representation with Repeated Motion Analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TVCG.2010.87en_US
dc.identifier.journalIEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSen_US
dc.citation.volume17en_US
dc.citation.issue4en_US
dc.citation.spage527en_US
dc.citation.epage538en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000287199600011-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000287199600011.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。