Full metadata record
DC FieldValueLanguage
dc.contributor.authorFang, C. P.en_US
dc.contributor.authorLue, C. S.en_US
dc.contributor.authorYoung, Ben-Lien_US
dc.date.accessioned2014-12-08T15:11:54Z-
dc.date.available2014-12-08T15:11:54Z-
dc.date.issued2011-03-28en_US
dc.identifier.issn1098-0121en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.83.113105en_US
dc.identifier.urihttp://hdl.handle.net/11536/9126-
dc.description.abstractWith the aim of providing microscopic information about the electronic characteristics of SrAl(2)Si(2) and effects of chemical substitution on its pseudogap features, we carried out a study on Sr(1-x)Y(x)Al(2)Si(2) (x = 0, 0.05, 0.1, and 0.15) by means of (27)Al nuclear magnetic resonance (NMR) spectroscopy. For stoichiometric SrAl(2)Si(2), the temperature-dependent NMR Knight shift and spin-lattice relaxation rate are associated with a sharp feature in the electronic density of state within a pseudogap at around the Fermi level. On the other hand, the NMR observations for Y-substituted compounds exhibit ordinary metallic behavior, suggesting that the Fermi level has moved out of the pseudogap for these materials, resulting in the dominant Korringa process responsible for the observed relaxation rates.en_US
dc.language.isoen_USen_US
dc.titleEvolution of the pseudogap in Sr(1-x)Y(x)Al(2)Si(2) (x=0, 0.05, 0.1, and 0.15) probed via (27)Al nuclear magnetic resonanceen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevB.83.113105en_US
dc.identifier.journalPHYSICAL REVIEW Ben_US
dc.citation.volume83en_US
dc.citation.issue11en_US
dc.citation.spageen_US
dc.citation.epageen_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
Appears in Collections:Articles