Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Dian-Songen_US
dc.contributor.authorLiang, Tyneen_US
dc.date.accessioned2014-12-08T15:11:57Z-
dc.date.available2014-12-08T15:11:57Z-
dc.date.issued2011-03-01en_US
dc.identifier.issn0916-8532en_US
dc.identifier.urihttp://dx.doi.org/10.1587/transinf.E94.D.535en_US
dc.identifier.urihttp://hdl.handle.net/11536/9163-
dc.description.abstractIn this paper, effective Chinese definite anaphora resolution is addressed by using feature weight learning and Web-based knowledge acquisition. The presented salience measurement is based on entropy-based weighting on selecting antecedent candidates. The knowledge acquisition model is aimed to extract more semantic features, such as gender, number, and semantic compatibility by employing multiple resources and Web mining. The resolution is justified with a real corpus and compared with a classification-based model. Experimental results show that our approach yields 72.5% success rate on 426 anaphoric instances. In comparison with a general classification-based approach, the performance is improved by 4.7%.en_US
dc.language.isoen_USen_US
dc.subjectdefinite anaphora resolutionen_US
dc.subjectfeature weight learningen_US
dc.subjectWeb miningen_US
dc.titleImproving Definite Anaphora Resolution by Effective Weight Learning and Web-Based Knowledge Acquisitionen_US
dc.typeArticleen_US
dc.identifier.doi10.1587/transinf.E94.D.535en_US
dc.identifier.journalIEICE TRANSACTIONS ON INFORMATION AND SYSTEMSen_US
dc.citation.volumeE94Den_US
dc.citation.issue3en_US
dc.citation.spage535en_US
dc.citation.epage541en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000290125900016-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000290125900016.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.