Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 吳宗信 | en_US |
dc.contributor.author | WU JONG-SHINN | en_US |
dc.date.accessioned | 2014-12-13T10:32:43Z | - |
dc.date.available | 2014-12-13T10:32:43Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.govdoc | NSC93-2212-E009-015 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/91693 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=984839&docId=183797 | en_US |
dc.description.abstract | 工業界的應用以及學術界的研究中,有許多實用的系統涉及多重物理現象的交互作用(例如紊流、熱流、化學、機械、濺鍍、稀薄氣體、電磁或電漿製程)。在一些系統中,其時間及長度尺寸會相差數個次方。而這些跨物理量以及多重尺寸的數值模擬需要發展出具有經驗的模型以及方法來模擬這些交互作用。而且根據適當的軟硬體技術來發展有效率的數值演算法以及先進的計算技術。因為這些模擬需要相當大的計算量,因此通常需要有效率的平行化運算來滿足需求。 本計畫為三年期計畫,將會詳細地模擬利用氬氣為工作氣體及銅為靶材的DC magnetron電漿濺鍍腔體之多尺寸及跨物理模擬;並建置一座標準(model)電漿濺鍍腔體,進行電漿參數的量測,以為模擬之比對標準。本研究的重要性與關聯性與現今工業界常用的物理氣相沉積等類似製程設備有極大的相關性。這些現象包括氬氣在稀薄氣體環境下放電所產生的電漿、帶能量的離子從氬氣電漿轟擊靶材所產生的濺鍍現象、被濺鍍出的原子在腔體中的傳輸以及被濺鍍出的原子在晶片上的沉積。模擬這些物理的相關方法包括流場解(靜電的Poisson方程式及靜磁的vector potential Poisson equation),加上因在微量離子化的稀薄氣體,模擬非平衡現象之的電漿模擬法PIC/MC (Particle-In-Cell/Monte Carlo)、模擬靶材濺鍍的分子動力法MD (Molecular Dynamics)以及計算被濺鍍原子傳輸的直接模擬蒙地卡羅法 DSMC (Direct Simulation Monte Carlo)。而上述以分子及解統御方程式等模擬法需要藉由平行化來克服大量的計算時間。而各個領域的模擬必需經由本計畫之實驗結果或文獻上相關的模擬結果來驗證。本計畫的最後目標是結合上述的模擬法,以得到DC-magnetron 電漿濺鍍腔體內多重尺寸及多重物理之進一步瞭解。 簡言之,所提出的計畫包括: 第一年,發展並驗證二個分子模擬法之程式,包括電漿模擬程式以及靶材濺鍍的分子動力法等等。此外,設計並建置一座DC-magnetron濺鍍系統。第二年,開始發展相關上述相關模擬程式之平行化版本,並利用本實驗室架設的叢集式電腦進行測試。我們將會測試幾個不同領域的大尺寸計算。此外,利用量子化學法推導出銅原子團簇與背景氣體(氬氣)之間的碰撞行為參數,此參數在接下來的DSMC模擬中會使用到。接下來完整的平行化分子動力法將會得到濺鍍的資料並轉化成濺鍍的產生率。此外,我們將會安裝一個Langmuir探針系統來量測相關的電漿參數以便未來程式的驗證。第三年,繼續擴大電漿的量測。最後經由靶材表面相關的濺鍍資料來結合平行化的電漿模擬模組以及平行化的直接模擬蒙地卡羅法。 | zh_TW |
dc.description.abstract | great number of practical systems, important for industrial applications and academic research, involve interactions amongst a range of physical phenomena (e.g., turbulent, thermal, chemical, mechanical, sputtering, rarefied, electromagnetic or plasma processes). In some systems, the time and length scales of processes differ by several orders of magnitude. Numerical simulation of these multi-physics and multi-scale problems requires the development of sophisticated models and methods for their integration, as well as efficient numerical algorithms and advanced computational techniques based on appropriate software/hardware technologies. Because of the heavy computational demands of such simulations, one often needs to utilize an efficient parallel implementation to fulfill the requirements. In this proposed three-year project, the multi-scale and multi-physics modeling of a typical DC magnetron plasma-sputtering chamber, using argon as the background gas and copper as the target material, shall be studied in detail. In addition, we shall construct a model DC-magnetron sputtering chamber and measure related plasma parameters as the comparison database for the simulation. Importance and relevance of the current study is justified by the frequent application of the sputtering processing equipment in the industry that requires physical vapor deposition. These phenomena include plasma generation due to argon gas discharge under rarefied conditions, target materials sputtering due to energetic ion bombardment from the argon plasma, transport of sputtered atoms in the chamber, and the deposition process of the sputtered atoms on the wafer. Corresponding simulation methods for modeling the physics include field solution (Poisson equation for electrostatics and vector potential equation for magnetostatics) plus PIC/MCC (Particle-In-Cell/Monte Carlo Collision) for plasma simulation due to strong non-equilibrium in this weakly ionized rarefied flow, MD (Molecular Dynamics) simulation for target materials sputtering, and DSMC (Direct Simulation Monte Carlo) computation for the transport of sputtered atoms. Parallel implementation for the above-mentioned particle- and continuum-based methods is also proposed to conquer the heavy computational requirements. Simulation in each discipline shall be verified by comparing the prediction with either experimental data obtained in this project or simulation results available in the literature. Our final goal of this proposed research is to couple the above-mentioned simulation tools to better understand the underlying physics of the DC-magnetron sputtering chamber. | en_US |
dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 多尺度 | zh_TW |
dc.subject | 跨物理量 | zh_TW |
dc.subject | 電漿 | zh_TW |
dc.subject | 濺鍍 | zh_TW |
dc.subject | 稀薄氣體 | zh_TW |
dc.subject | 氣相沉積 | zh_TW |
dc.subject | PIC | zh_TW |
dc.subject | 蒙地卡羅 | zh_TW |
dc.subject | 分子動力 | zh_TW |
dc.subject | 直接模擬蒙地卡羅 | zh_TW |
dc.subject | 平行化 | zh_TW |
dc.subject | multi-scale | en_US |
dc.subject | multi-physics | en_US |
dc.subject | plasma | en_US |
dc.subject | sputtering | en_US |
dc.subject | rarefied gas | en_US |
dc.subject | vapor deposition | en_US |
dc.subject | PIC/MCC | en_US |
dc.subject | MD | en_US |
dc.subject | DSMC | en_US |
dc.subject | parallel implementation | en_US |
dc.subject | Langmuir probe. | en_US |
dc.title | 直流磁控電漿濺鍍腔體中多重尺度及物理現象之模擬及實驗研究(I) | zh_TW |
dc.title | Multiscale and Multiphysics Modeling and Experiment of a DC-Magnetron Sputtering Chamber (I) | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 交通大學機械工程研究所 | zh_TW |
Appears in Collections: | Research Plans |