完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Su-Hsienen_US
dc.contributor.authorKe, Hao-Renen_US
dc.contributor.authorYang, Wei-Pangen_US
dc.date.accessioned2014-12-08T15:12:11Z-
dc.date.available2014-12-08T15:12:11Z-
dc.date.issued2008-05-04en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2007.03.012en_US
dc.identifier.urihttp://hdl.handle.net/11536/9347-
dc.description.abstractThis paper aims to cluster Chinese patent documents with the structures. Both the explicit and implicit structures are analyzed to represent by the proposed structure expression. Accordingly, an unsupervised clustering algorithm called structured self-organizing map (SOM) is adopted to cluster Chinese patent documents with both similar content and structure. Structured SOM clusters the similar content of each sub-part structure, and then propagates the similarity to upper level ones. Experimental result showed the maps size and number of patents are proportional to the computing time, which implies the width and depth of structure affects the performance of structured SOM. Structured clustering of patents is helpful in many applications. In the lawsuit of copyright, companies are easy to find claim conflict in the existent patents to contradict the accusation. Moreover, decision-maker of a company can be advised to avoid hot-spot aspects of patents, which can save a lot of R&D effort. (c) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectstructure clusteringen_US
dc.subjectChinese patenten_US
dc.subjectstructure expressionen_US
dc.subjectmetadataen_US
dc.titleStructure clustering for Chinese patent documentsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2007.03.012en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume34en_US
dc.citation.issue4en_US
dc.citation.spage2290en_US
dc.citation.epage2297en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000253521900007-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000253521900007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。