完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Liu, Kang-Ping | en_US |
dc.contributor.author | Hsu, Kai-Cheng | en_US |
dc.contributor.author | Huang, Jhang-Wei | en_US |
dc.contributor.author | Chang, Lu-Shian | en_US |
dc.contributor.author | Yang, Jinn-Moon | en_US |
dc.date.accessioned | 2014-12-08T15:12:27Z | - |
dc.date.available | 2014-12-08T15:12:27Z | - |
dc.date.issued | 2010-06-01 | en_US |
dc.identifier.issn | 0218-2130 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1142/S0218213010000169 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9567 | - |
dc.description.abstract | We present an ATRIPPI model for analyzing protein-protein interactions. This model is a 167-atom-type and residue-specific interaction preferences with distance bins derived from 641 co-crystallized protein-protein interfaces. The ATRIPPI model is able to yield physical meanings of hydrogen bonding, disulfide bonding, electrostatic interactions, van der Waals and aromatic-aromatic interactions. We applied this model to identify the native states and near-native complex structures on 17 bound and 17 unbound complexes from thousands of decoy structures. On average, 77.5% structures (155 structures) of top rank 200 structures are closed to the native structure. These results suggest that the ATRIPPI model is able to keep the advantages of both atom-atom and residue-residue interactions and is a potential knowledge-based scoring function for protein-protein docking methods. We believe that our model is robust and provides biological meanings to support protein-protein interactions. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Protein-protein interaction | en_US |
dc.subject | atom-atom interacting preference | en_US |
dc.subject | knowledge-based scoring matrix | en_US |
dc.subject | residue-residue interaction preference | en_US |
dc.title | ATRIPPI: AN ATOM-RESIDUE PREFERENCE SCORING FUNCTION FOR PROTEIN-PROTEIN INTERACTIONS | en_US |
dc.type | Article; Proceedings Paper | en_US |
dc.identifier.doi | 10.1142/S0218213010000169 | en_US |
dc.identifier.journal | INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS | en_US |
dc.citation.volume | 19 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 251 | en_US |
dc.citation.epage | 266 | en_US |
dc.contributor.department | 生物科技學系 | zh_TW |
dc.contributor.department | 生物資訊及系統生物研究所 | zh_TW |
dc.contributor.department | Department of Biological Science and Technology | en_US |
dc.contributor.department | Institude of Bioinformatics and Systems Biology | en_US |
dc.identifier.wosnumber | WOS:000279431700003 | - |
顯示於類別: | 會議論文 |