完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Shiue, Chin-Lin | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.date.accessioned | 2014-12-08T15:12:28Z | - |
dc.date.available | 2014-12-08T15:12:28Z | - |
dc.date.issued | 2008-03-12 | en_US |
dc.identifier.issn | 1077-8926 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9576 | - |
dc.description.abstract | Let G be a connected graph, and let f be a function mapping V(G) into N. We define f(H) = Sigma(nu is an element of V(H)) f(nu) for each subgraph H of G. The function f is called an IC-coloring of G if for each integer k in the set {1, 2, ... , f(G)} there exists and (induced) connected subgraph H of G such that f(H) = k, and the IC-index of G, M(G), is the maximum value of f(G) where f is an IC-coloring of G. In this paper, we show that M(K-m,K-n) = 3.2(m+n-2)-2(m-2)+2 for each complete bipartite graph K-m,K-n, 2 <= m <= n. | en_US |
dc.language.iso | en_US | en_US |
dc.title | The IC-indices of complete bipartite graphs | en_US |
dc.type | Article | en_US |
dc.identifier.journal | ELECTRONIC JOURNAL OF COMBINATORICS | en_US |
dc.citation.volume | 15 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.epage | en_US | |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000253931300006 | - |
dc.citation.woscount | 2 | - |
顯示於類別: | 期刊論文 |