Full metadata record
DC FieldValueLanguage
dc.contributor.author陳方中en_US
dc.contributor.authorChen Fang-Chungen_US
dc.date.accessioned2014-12-13T10:38:54Z-
dc.date.available2014-12-13T10:38:54Z-
dc.date.issued2013en_US
dc.identifier.govdocNSC101-2628-E009-008-MY3zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/95858-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2866072&docId=407916en_US
dc.description.abstract由於生物組織在近紅外光波段具有很高的穿透度,對於近紅外光有高轉換效率的有機光伏 元件有很大潛力可以無線的方式供應奈/微米生物醫療元件所需的能源。「高近紅外光效率有 機光伏元件的研發與其在生物醫療的應用探索」之研究計劃的目標有二,第一在於提升有機光 伏元件在近紅外光光譜區域的效率,這方面的研究成果將有機會提升有機太陽能電池整體的能 量轉換效率。第二則在於發展生物可相容的有機光伏電池,探索此種新式光伏元件在生物醫療 方面應用的可能性。計畫第一年將探討數種增進元件於近紅外光區域效率的方式,包含上轉換 奈米磷光物質的應用與機制探討、近紅光光學干涉現象與光學間隙層的應用、探討陰極金屬反 射率的影響、金屬奈米粒子的表面電漿共振效應等。第二年則將使用生物相容性的材料製作元 件,並置入模擬的生物環境中測試。更重要的是也將探討生物相容有機材料特性(如能階、薄 膜型態等)與元件特性之間的關係。第三年將結合前二年的研究成果,將增進元件效率的數種 方式應用於生物相容元件之上,最後也將驗證此元件在生醫應用方面的潛力,製作以有機光伏 元件為基礎的軟性電刺激神經增生支架的雛型。zh_TW
dc.description.abstractBecause of the high transparence of biological tissues toward near-infrared (NIR) photons, organic photovoltaic devices (OPVs) with high NIR response might be a promising wireless electrical source for biological nano/microdevices. The first aim of this three-year project, “High-efficient near-infrared organic photovoltaic devices and their biomedical applications”, is to increase the quantum efficiency of OPVs in the NIR region, thereby improving the overall power conversion efficiency. The second one is to develop biocompatible OPVs and explore the possible application of OPV technology onto biomedical treatments. In the first year, we will improve the device efficiency in the NIR wavelength regime. We plan to incorporate up-conversion phosphors and/or metallic nanoparticles, which can induce surface plasmon (SP) effect, into the devices. Optical electrical field in the device will be analyzed and optical spacers will be also used to increase the absorption of the NIR photons. Further, the effect of the reflection of the metal cathodes will be also studied. Moreover, SP-enhanced up-conversion process of the nanoparticle phosphors will be also investigated. In the second year, we will use biocompatible materials to fabricate the OPVs. The device will be tested in an in vitro environment. More importantly, the relationship between the material properties, such as the thin-film morphology, and the device performance will be correlated. In the last year, we will apply the techniques developed in the first year on the biocompatible OPVs to improve the device efficiency. Finally, we will demonstrate the prototype of the soft OPVs as neural tissue regeneration scaffolds with an unique electrical stimulation function.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject上轉換zh_TW
dc.subject高分子zh_TW
dc.subject光伏效應zh_TW
dc.subject型態學zh_TW
dc.subject表面電漿zh_TW
dc.subject生物相容性zh_TW
dc.subject電刺激zh_TW
dc.subjectup-conversionen_US
dc.subjectpolymeren_US
dc.subjectphotovoltaicen_US
dc.subjectmorphologyen_US
dc.subjectsurface plasmonen_US
dc.subjectbiocompatibleen_US
dc.subjectelectrical stimulationen_US
dc.title高近紅外光效率有機光伏元件的研發與其在生物醫療的應用探索zh_TW
dc.titleHigh-efficient near-infrared organic photovoltaic devices and their biomedical applicationsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學光電工程學系(所)zh_TW
Appears in Collections:Research Plans