完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Shinq-Jenen_US
dc.contributor.authorWu, Cheng-Taoen_US
dc.contributor.authorChang, Yen-Chenen_US
dc.date.accessioned2014-12-08T15:12:29Z-
dc.date.available2014-12-08T15:12:29Z-
dc.date.issued2008-03-01en_US
dc.identifier.issn1524-9050en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TITS.2007.911353en_US
dc.identifier.urihttp://hdl.handle.net/11536/9594-
dc.description.abstractA magnetically levitated (MagLev) vehicle prototype has independent levitation (attraction) and propulsion dynamics. We focus on the levitation behavior to obtain precise gap control of a 1/4 vehicle. An electromagnetic leviation system is highly nonlinear and naturally unstable, and its equilibrium region is severely restricted. It is therefore a tough task to achieve high-performance vehicle-levitated control. In this paper, a MagLev system is modeled by two self-organizing neural-fuzzy techniques to achieve linear and affine Takagi-Sugeno (T-S) fuzzy systems. The corresponding linear-type optimal fuzzy controllers are then used to regulate both physical systems (voltage- and current-controlled systems). On the other hand, an affine-type fuzzy control design scheme is proposed for the affine-type systems. Control performance and robustness to an external disturbance are shown in simulation results. Affine T-S fuzzy representation provides one more adjustable parameter in the neural-fuzzy learning process. Therefore, an affine T-S-based controller possesses better performance for a current-controlled system since it is nonlinear not only to system states but also to system inputs. This phenomenon is shown in simulation results. Technical contributions include a nonlinear affine-type optimal fuzzy control design scheme, self-organizing neural-learning-based linear and affine T-S fuzzy modeling for both MagLev systems, and the achievement of an integrated neural-fuzzy technique to stabilize current- and voltage-controlled MagLev systems under minimal energy-consumption conditions.en_US
dc.language.isoen_USen_US
dc.subjectaffine Takagi-Sugeno (T-S) systemen_US
dc.subjectlinear T-S systemen_US
dc.subjectmodeling indexen_US
dc.subjectneural-fuzzyen_US
dc.titleNeural-fuzzy gap control for a current/voltage-controlled 1/4-vehicle MagLev systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TITS.2007.911353en_US
dc.identifier.journalIEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMSen_US
dc.citation.volume9en_US
dc.citation.issue1en_US
dc.citation.spage122en_US
dc.citation.epage136en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000253790100012-
dc.citation.woscount9-
顯示於類別:期刊論文


文件中的檔案:

  1. 000253790100012.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。