Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng, Kai-Chung | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.contributor.author | Chiang, Nam-Po | en_US |
dc.contributor.author | Tzeng, Chien-Kuo | en_US |
dc.date.accessioned | 2014-12-08T15:12:33Z | - |
dc.date.available | 2014-12-08T15:12:33Z | - |
dc.date.issued | 2008-03-01 | en_US |
dc.identifier.issn | 0315-3681 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9639 | - |
dc.description.abstract | Let G = (V, E) be a connected graph and let phi be a permutation of V. The total relative displacement of the permutation phi in G is delta(phi) (G) = Sigma ({x,y}CV) vertical bar d(x,y) - d(phi(x),phi(y))vertical bar, where d(x, y) means the distance between x and y in G, i.e., the length of a shortest path between x and y. A permutation phi which attains the minimum value of non-zero value of delta(phi)(G) is referred to as a near-automarphism of G and a permutation phi which attains the maximum value of delta(phi)(G) is referred to as a chaotic mapping of G. In this paper, we study the maximum value of delta(phi) (G) among all permutations in paths and cycles. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A study of total relative Displacements of permutations in paths and cycles | en_US |
dc.type | Article | en_US |
dc.identifier.journal | UTILITAS MATHEMATICA | en_US |
dc.citation.volume | 75 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 139 | en_US |
dc.citation.epage | 157 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000254111900011 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |