Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Kai-Chungen_US
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorChiang, Nam-Poen_US
dc.contributor.authorTzeng, Chien-Kuoen_US
dc.date.accessioned2014-12-08T15:12:33Z-
dc.date.available2014-12-08T15:12:33Z-
dc.date.issued2008-03-01en_US
dc.identifier.issn0315-3681en_US
dc.identifier.urihttp://hdl.handle.net/11536/9639-
dc.description.abstractLet G = (V, E) be a connected graph and let phi be a permutation of V. The total relative displacement of the permutation phi in G is delta(phi) (G) = Sigma ({x,y}CV) vertical bar d(x,y) - d(phi(x),phi(y))vertical bar, where d(x, y) means the distance between x and y in G, i.e., the length of a shortest path between x and y. A permutation phi which attains the minimum value of non-zero value of delta(phi)(G) is referred to as a near-automarphism of G and a permutation phi which attains the maximum value of delta(phi)(G) is referred to as a chaotic mapping of G. In this paper, we study the maximum value of delta(phi) (G) among all permutations in paths and cycles.en_US
dc.language.isoen_USen_US
dc.titleA study of total relative Displacements of permutations in paths and cyclesen_US
dc.typeArticleen_US
dc.identifier.journalUTILITAS MATHEMATICAen_US
dc.citation.volume75en_US
dc.citation.issueen_US
dc.citation.spage139en_US
dc.citation.epage157en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000254111900011-
dc.citation.woscount0-
Appears in Collections:Articles