完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 吳培元 | en_US |
dc.contributor.author | WU PEI YUAN | en_US |
dc.date.accessioned | 2014-12-13T10:40:03Z | - |
dc.date.available | 2014-12-13T10:40:03Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.govdoc | NSC101-2115-M009-004 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/97103 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=2593847&docId=392350 | en_US |
dc.description.abstract | 在此一研究計畫中, 我們將探討, 對一個在複希伯特空間上的線性 有界算子A, 何時A 與A 的張量積的數值半徑會和A 的範數和A 的數 值半徑的乘積相等. 已知的是前者一定小於或等於後者. 我們希望 將二者的相等和A 的結構性質拉上關係, 並已獲致一些部分結果. 例 如, 現在已知, 設一個有限矩陣A 的範數為1, 則由此相等可推論出 A 有酉部分或A 的數值域是一個中心點為原點的圓盤. 設A 是一個非 負矩陣, 且其實數部分是不可約的, 則我們可以得到一個完整的刻 劃. | zh_TW |
dc.description.abstract | In this project, we want to study, for a bounded linear operator A on a complex Hilbert space, when the equality of the numerical radius of the tensor product of A with A and the product of the norm of A and the numerical radius of A occurs. It is known that the former is always less than or equal to the latter. We try to relate the equality to the structure properties of the operator A and have already obtained some partial results. For example, it is now known that, under the assumption of the norm of the finite matrix A equal to 1, the equality implies that either A has a unitary part or the numerical range of A is a circular disc centered at the origin. When A is an (entry-wise) nonnegative matrix with its real part (permutationally) irreducible, we do have a complete characterization. | en_US |
dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 數值域 | zh_TW |
dc.subject | 數值半徑 | zh_TW |
dc.subject | 張量積 | zh_TW |
dc.subject | Numerical range | en_US |
dc.subject | numerical radius | en_US |
dc.subject | tensor product | en_US |
dc.title | 張量積的數值域 | zh_TW |
dc.title | Numerical Ranges of Tensor Products | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 國立交通大學應用數學系(所) | zh_TW |
顯示於類別: | 研究計畫 |