Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pan, Yeh-jong | en_US |
dc.contributor.author | Lu, Min-hsin | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2014-12-08T15:12:39Z | - |
dc.date.available | 2014-12-08T15:12:39Z | - |
dc.date.issued | 2008-02-01 | en_US |
dc.identifier.issn | 0925-9899 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s10801-007-0072-5 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9722 | - |
dc.description.abstract | Let Gamma denote a distance-regular graph with diameter d >= 3. By a parallelogram of length 3, we mean a 4-tuple xyzw consisting of vertices of Gamma such that partial derivative(x,y)=partial derivative(z,w)=1, partial derivative(x,z)=3, and partial derivative(x,w)=partial derivative(y,w)=partial derivative(y,z)=2, where partial derivative denotes the path-length distance function. Assume that Gamma has intersection numbers a(1)=0 and a(2)not equal 0. We prove that the following (i) and (ii) are equivalent. (i) Gamma is Q-polynomial and contains no parallelograms of length 3; (ii) Gamma has classical parameters (d,b,alpha,beta) with b <-1. Furthermore, suppose that (i) and (ii) hold. We show that each of b(b+1)(2)(b+2)/c (2), (b-2)(b-1)b(b+1)/(2+2b-c (2)) is an integer and that c (2)<= b(b+1). This upper bound for c (2) is optimal, since the Hermitian forms graph Her(2)(d) is a triangle-free distance-regular graph that satisfies c (2)=b(b+1). | en_US |
dc.language.iso | en_US | en_US |
dc.subject | distance-regular graph | en_US |
dc.subject | Q-polynomial | en_US |
dc.subject | classical parameters | en_US |
dc.title | Triangle-free distance-regular graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10801-007-0072-5 | en_US |
dc.identifier.journal | JOURNAL OF ALGEBRAIC COMBINATORICS | en_US |
dc.citation.volume | 27 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 23 | en_US |
dc.citation.epage | 34 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000251655200002 | - |
dc.citation.woscount | 6 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.