Full metadata record
DC FieldValueLanguage
dc.contributor.authorPan, Yeh-jongen_US
dc.contributor.authorLu, Min-hsinen_US
dc.contributor.authorWeng, Chih-wenen_US
dc.date.accessioned2014-12-08T15:12:39Z-
dc.date.available2014-12-08T15:12:39Z-
dc.date.issued2008-02-01en_US
dc.identifier.issn0925-9899en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10801-007-0072-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/9722-
dc.description.abstractLet Gamma denote a distance-regular graph with diameter d >= 3. By a parallelogram of length 3, we mean a 4-tuple xyzw consisting of vertices of Gamma such that partial derivative(x,y)=partial derivative(z,w)=1, partial derivative(x,z)=3, and partial derivative(x,w)=partial derivative(y,w)=partial derivative(y,z)=2, where partial derivative denotes the path-length distance function. Assume that Gamma has intersection numbers a(1)=0 and a(2)not equal 0. We prove that the following (i) and (ii) are equivalent. (i) Gamma is Q-polynomial and contains no parallelograms of length 3; (ii) Gamma has classical parameters (d,b,alpha,beta) with b <-1. Furthermore, suppose that (i) and (ii) hold. We show that each of b(b+1)(2)(b+2)/c (2), (b-2)(b-1)b(b+1)/(2+2b-c (2)) is an integer and that c (2)<= b(b+1). This upper bound for c (2) is optimal, since the Hermitian forms graph Her(2)(d) is a triangle-free distance-regular graph that satisfies c (2)=b(b+1).en_US
dc.language.isoen_USen_US
dc.subjectdistance-regular graphen_US
dc.subjectQ-polynomialen_US
dc.subjectclassical parametersen_US
dc.titleTriangle-free distance-regular graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10801-007-0072-5en_US
dc.identifier.journalJOURNAL OF ALGEBRAIC COMBINATORICSen_US
dc.citation.volume27en_US
dc.citation.issue1en_US
dc.citation.spage23en_US
dc.citation.epage34en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000251655200002-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000251655200002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.