完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Cheng-Jungen_US
dc.contributor.authorLee, Chien-I.en_US
dc.contributor.authorYang, Wei-Pangen_US
dc.date.accessioned2014-12-08T15:12:39Z-
dc.date.available2014-12-08T15:12:39Z-
dc.date.issued2008-02-01en_US
dc.identifier.issn0020-0255en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ins.2007.09.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/9729-
dc.description.abstractDiscretization algorithms have played an important role in data mining and knowledge discovery. They not only produce a concise summarization of continuous attributes to help the experts understand the data more easily, but also make learning more accurate and faster. In this paper, we propose a static, global, incremental, supervised and top-down discretization algorithm based on Class-Attribute Contingency Coefficient. Empirical evaluation of seven discretization algorithms on 13 real datasets and four artificial datasets showed that the proposed algorithm could generate a better discretization scheme that improved the accuracy of classification. As to the execution time of discretization, the number of generated rules, and the training time of C5.0, our approach also achieved promising results. (c) 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectdata miningen_US
dc.subjectclassificationen_US
dc.subjectdecision treeen_US
dc.subjectdiscretizationen_US
dc.subjectContingency Coefficienten_US
dc.titleA discretization algorithm based on Class-Attribute Contingency Coefficienten_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ins.2007.09.004en_US
dc.identifier.journalINFORMATION SCIENCESen_US
dc.citation.volume178en_US
dc.citation.issue3en_US
dc.citation.spage714en_US
dc.citation.epage731en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000251621700009-
dc.citation.woscount48-
顯示於類別:期刊論文


文件中的檔案:

  1. 000251621700009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。