Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Hsiuying | en_US |
dc.date.accessioned | 2014-12-08T15:12:44Z | - |
dc.date.available | 2014-12-08T15:12:44Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.issn | 0094-9655 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9792 | - |
dc.identifier.uri | http://dx.doi.org/10.1080/00949650701273902 | en_US |
dc.description.abstract | For a normal distribution with known variance, the standard confidence interval of the location parameter is derived from the classical Neyman procedure. When the parameter space is known to be restricted, the standard confidence interval is arguably unsatisfactory. Recent articles have addressed this problem and proposed confidence intervals for the mean of a normal distribution where the parameter space is not less than zero. In this article, we propose a new confidence interval, rp interval, and derive the Bayesian credible interval and likelihood ratio interval for general restricted parameter space. We compare these intervals with the standard interval and the minimax interval. Simulation studies are undertaken to assess the performances of these confidence intervals. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | likelihood ratio interval | en_US |
dc.subject | Bayesian credible interval | en_US |
dc.subject | rp interval | en_US |
dc.subject | coverage probability | en_US |
dc.title | Confidence intervals for the mean of a normal distribution with restricted parameter space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/00949650701273902 | en_US |
dc.identifier.journal | JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION | en_US |
dc.citation.volume | 78 | en_US |
dc.citation.issue | 9 | en_US |
dc.citation.spage | 829 | en_US |
dc.citation.epage | 841 | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
dc.contributor.department | Institute of Statistics | en_US |
dc.identifier.wosnumber | WOS:000259293300004 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.