完整后设资料纪录
DC 栏位语言
dc.contributor.author彭文志en_US
dc.contributor.authorPeng Wen-Chihen_US
dc.date.accessioned2014-12-13T10:41:11Z-
dc.date.available2014-12-13T10:41:11Z-
dc.date.issued2012en_US
dc.identifier.govdocNSC100-2218-E009-016-MY3zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/98274-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2394023&docId=381047en_US
dc.description.abstract近年来云端运算科技的进步,提供运算能力已成为一种服务。云端运算平台提
供大规模储存与资料运算分析平台,现有的云端运算应用均限定于静态的文件储存、网
页关连性分析等。我们预期未来的云端应用将与实际的生活环境更为息息相关,如透过
感测器(Sensor)的布建,感测器透过无线网路 (Wireless Networks) 互相连结,负责监控
并搜集生活环境相关的资料,此一环境架构即为无线感测网路环境 (Wireless Sensor
Networks)。透过无线感测网路收集资料,送达云端运算平台做资料收集与分析,将是未
来云端运算的主要应用。在本计划中,感测网路着重在车载感测 (含视讯)以及使用者透
过手持装置上之感测装置,在感测资料的收集与分析上将是大规模 (Large-Scale) 的情
境,我们的计画目标在于建构一个以感测网路为基础的云端资料查询索引及探勘平台,
提供与使用者生活环境周遭有关之云端应用服务。
本计画是为期三年之总计画‘结合云端运算与感测网路之应用服务平台’之子计画
三 ‘SeC-Plat: 以感测网路为基础的云端资料查询索引及探勘平台’。在此子计画中,
我们将研发适合于感测网路之云端运算平台。具体而言,感测资料具备了空间维度之资
讯,针对某个空间查询范围,运算平台当迅速回传所有落在这区域的感测资料给云端应
用程式。然现行列式(Colum-oriented)云端资料库系统尚未支援空间资料的索引结构,因
此,在第一年,我们将研发云端运算平台之空间索引结构。在第二年,我们将研发云端
运算平台之动态虚拟机器配置机制,以充分利用云端运算资源于感测资料收集与探勘。
有鉴于云端应用服务,将有大量的资料查询被执行,因此,在第三年中,我们将研究云
端运算平台之资料查询最佳化机制。整体而言,我们主要的研究课题有三:(1) 针对现
行云端资料库多属于列式资料库,设计空间索引结构,提升区域查询(Range Query)的效
率; (2)监控运算平台上每个虚拟机器的资料量与运算负荷量,设计动态虚配置拟机器的
机制,使得虚拟机器能适当配置给来自应用服务端的每个查询,避免造成运算资源的浪
费; (3)当云端运算平台同时间接收到大量查询时,我们当设计查询最佳化机制,分析查
询间的重复性来避免相同子查询被重复执行的情形,提升系统整体的效能。
随着无线感测网路的进步与云端运算近年的蓬勃发展,我们相信此计画之执行,
将可研发出适用于感测网路为基础之云端运算平台,提供资料查询索引与探勘之前瞻性
技术。
zh_TW
dc.description.abstractWith the advance of cloud computing technology, cloud computing becomes a powerful
way to provide large-scale computing and analysis. It is shown that cloud computing can
efficiently store and analyze static documents and Web pages. We expect that in the future,
cloud computing is able to play an important platform to collect and analyze sensor data
sensed from physical worlds. In our project, we focus on sensor data from vehicles and
mobile phones since the number of vehicles and mobile phones is intrinsically huge, which
could demonstrate the scalability in data collection and analysis over cloud computing
platforms.
This project is under the integrated project ‘SeC: Sensor-Enabled Cloud Service
Platforms’, and aims at designing cloud data management that consists of index structures,
query optimizations and mining mechanisms. Our primary goals include (1) spatial index
structures; (2) dynamic virtual machine managements; (3) multiple query optimizations. More
specifically, due to that sensor data usually has spatial information; range queries for sensor
data will become a basic query type in sensor-enabled cloud service platforms. However,
current cloud data management does not provide such spatial index structures. Thus, in the
first year, we intend to develop a spatial index structure for range queries and the developed
spatial index structure will be implemented on key-valued column-oriented cloud databases.
In the second year, we develop a dynamic virtual machine (VM) management. Since cloud
computing platforms have their own VMs to serve a variety of cloud services, our proposed
management is able to efficiently balance workloads of VMs to guarantee good qualities for
cloud services. Moreover, in cloud computing platforms, a huge amount of queries may be
submitted. To further improve the system performance, in the third year, we propose a query
optimization mechanism in cloud computing platforms.
In view of the increasing attention on cloud computing, we strongly believe that this project
is very timely and will deliver results of both theoretical and practical importance.
en_US
dc.description.sponsorship行政院国家科学委员会zh_TW
dc.language.isozh_TWen_US
dc.subject云端资料处理zh_TW
dc.subject资料管理zh_TW
dc.subject资料查询zh_TW
dc.subject索引建立zh_TW
dc.title结合云端运算与感测网路之应用服务平台---子计画三:SeC-Plat以感测网路为基础之云端资料查询索引及探勘平台zh_TW
dc.titleSeC-Plat---Efficient Query Processing and Dynamic Resource Management for Sensor Enabled Cloud Computing Platformen_US
dc.typePlanen_US
dc.contributor.department国立交通大学资讯工程学系(所)zh_TW
显示于类别:研究计画