Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Tsung-Ming | en_US |
dc.contributor.author | Lin, Wen-Wei | en_US |
dc.contributor.author | Qian, Jiang | en_US |
dc.date.accessioned | 2014-12-08T15:12:48Z | - |
dc.date.available | 2014-12-08T15:12:48Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.issn | 0895-4798 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9855 | - |
dc.identifier.uri | http://dx.doi.org/10.1137/080713550 | en_US |
dc.description.abstract | In this paper, based on Patel's algorithm (1993), we propose a structure-preserving algorithm for solving palindromic quadratic eigenvalue problems (QEPs). We also show the relationship between the structure-preserving algorithm and the URV-based structure-preserving algorithm by Schroder (2007). For large sparse palindromic QEPs, we develop a generalized T-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi algorithm for solving the resulting T-skew-Hamiltonian pencils. Numerical experiments show that our proposed structure-preserving algorithms perform well on the palindromic QEP arising from a finite element model of high-speed trains and rails. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | palindromic quadratic eigenvalue problem | en_US |
dc.subject | T-symplectic pencil | en_US |
dc.subject | T-skew-Hamiltonian pencil | en_US |
dc.title | STRUCTURE-PRESERVING ALGORITHMS FOR PALINDROMIC QUADRATIC EIGENVALUE PROBLEMS ARISING FROM VIBRATION OF FAST TRAINS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1137/080713550 | en_US |
dc.identifier.journal | SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS | en_US |
dc.citation.volume | 30 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 1566 | en_US |
dc.citation.epage | 1592 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000263103700017 | - |
dc.citation.woscount | 17 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.