Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorQian, Jiangen_US
dc.date.accessioned2014-12-08T15:12:48Z-
dc.date.available2014-12-08T15:12:48Z-
dc.date.issued2008en_US
dc.identifier.issn0895-4798en_US
dc.identifier.urihttp://hdl.handle.net/11536/9855-
dc.identifier.urihttp://dx.doi.org/10.1137/080713550en_US
dc.description.abstractIn this paper, based on Patel's algorithm (1993), we propose a structure-preserving algorithm for solving palindromic quadratic eigenvalue problems (QEPs). We also show the relationship between the structure-preserving algorithm and the URV-based structure-preserving algorithm by Schroder (2007). For large sparse palindromic QEPs, we develop a generalized T-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi algorithm for solving the resulting T-skew-Hamiltonian pencils. Numerical experiments show that our proposed structure-preserving algorithms perform well on the palindromic QEP arising from a finite element model of high-speed trains and rails.en_US
dc.language.isoen_USen_US
dc.subjectpalindromic quadratic eigenvalue problemen_US
dc.subjectT-symplectic pencilen_US
dc.subjectT-skew-Hamiltonian pencilen_US
dc.titleSTRUCTURE-PRESERVING ALGORITHMS FOR PALINDROMIC QUADRATIC EIGENVALUE PROBLEMS ARISING FROM VIBRATION OF FAST TRAINSen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/080713550en_US
dc.identifier.journalSIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONSen_US
dc.citation.volume30en_US
dc.citation.issue4en_US
dc.citation.spage1566en_US
dc.citation.epage1592en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000263103700017-
dc.citation.woscount17-
Appears in Collections:Articles


Files in This Item:

  1. 000263103700017.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.