标题: 由化学、造影、药物设计探索双亚硝基铁错合物及活性氮化合物的生理功能-由化学、造影、药物设计探索双亚硝基铁错合物及活性氮化合物的生理功能( I )
Mapping Physiological Roles of Dinitrosyl Iron Complexes (Dnics) and Reactive Nitrogen Species (Rns): Chemistry, Imaging, and Medicine( I )
作者: 王云铭
WANG YUN-MING
国立交通大学生物科技学系(所)
关键字: 一氧化氮;双亚硝基铁化合物;一氧化氮显影剂;生物无机化学;nitric oxide;dinitrosyl iron complexes;nitric oxide sensor;imaging;bioinorganic
chemistry
公开日期: 2012
摘要: 双亚硝基铁化合物(DNIC)已经被证实是内生性一氧化氮的携带者。然而,其生理功能、生物
医学的应用以及所诱发的讯号传导性质仍是相当的不清楚。在前期的跨領域整合型计画中,本研究
团队已经证实可藉由不同的键结配位基來调控DNIC 释放NO 的能力且DNIC 可进入细胞内释放
NO。经由peptide-bound DNICs/RRE 研究中我们确认{Fe(NO)2}9 比较倾向与含有chelate-cysteine
的peptide 键结。藉由DNIC 与heme 模型(FeNCP) 的研究,我们也确认DNIC 上的一氧化氮可转
移至代表血基质蛋白的異位紫质铁错合物上。同时本团队也发展了针对生物分子以及金属離子在
in vitro 及in vivo 的显影技术,特别是发展了对于外生性及内生性的一氧化氮分子均有造影能力的
探针。在本研究计画中我们将专注于DNIC 在化学、化学生物学及生物医学应用上的探讨。并结
合heme 的模拟研究,深入瞭解DNIC、NO、及NO 所衍生的活性氮分子的生化机能。我们将透
过合成水溶性DNIC、水溶性FeNCP 结合辨識胜肽(targeting peptide)及显影分子进行细胞实验。
除了DNIC 及FeNCP 生物活性及药物动力学研究外,细胞实验也将提出DNIC 如何调控细胞内铁
離子的吸收以及其浓度的平衡的模型,并发展不同的合成策略來合成peptide-bound DNICs/RREs
用來研究在IscA 以及IscS 蛋白质存在下其铁硫簇修復的机制。经由具专一性活性氮化物的MRI
或光学探针将可解析DNIC 与FeNCP 在生物体内所导致的活性氮化物浓度变化、动态传递路径、
及所导致的生理反应。在生物医学方面,利用键结特殊生物辨释分子的水溶性DNICs/RREs 结合
分子造影技术,将可应用于非侵入性的心血管疾病臨床前的诊療。另外,此些分子经由释放NO
直接或间接造成癌细胞凋亡的可行性也将在此跨領域计画中确认。
Dinitrosyl iron complexes (DNICs) have been established as a potential endogenous NO carrier.
However, the biological functions and bio-medical applications of DNICs/RREs as well as the signaling
pathways induced by NO released from DNICs/RREs are poorly understood. In the previous
interdisciplinary project, Prof. Liaw’s group has demonstrated that the ability of NO releasing from
DNICs can be modulated by the coordinated ligands. From cellular studies, DNIC has been confirmed to
be delivered into cells and NO has been released inside the cells. Liaw's group also established the
preference of forming {Fe(NO)2}9 DNIC motif from chelatable cysteine-containing peptides over
monodentate cysteine-containing peptides. On the heme model studies, thoroughly understanding of
nitrite reduction promoted by FeNCP have been achieved by Hung’s group. Corraboration studies using
nitrite bound DNIC and iron N-confused porphyrin (FeNCP) also established that facile nitrite reduction
and nitric oxide transfer from DNIC to heme model compound can occur. Meanwhile, Professor Wang's
group has established the in vitro and in vivo molecular imaging techniques for biomolecules and metal
ions. Wang's group also developed NO fluorescent probes which provide the capability of exogeneous
and endogenous NO detection. Based on the solid results from the previous interdisciplinary project, we
will focus on the chemical biology, and bio-medical applications of DNICs in this grant proposal. The
DNIC chemistry will also connect with FeNCP heme model studies and further combine with newly
developed NO fluorescent/MRI probes to decode the cellular responses associated with DNICs, FeNCP,
and other related reactive nitrogen species (RNS). The objectives of this project will be (1) using de
novo peptide-bound DNICs/RREs as the probes to understand how DNICs regulating the Fe uptake and
cellular iron homeostasis, (2) combining MRI/optical RNS probes and the bio-related water-soluble
DNICs/RREs and FeNCP containing targeting molecules to understand the roles of DNICs and FeNCP
in stimulating the NO concentration changes and RNS production under physiological and
physiopathological situations in cells and in animal model such as zebrafish and mice, (3) examining the
toxicity and studying the pharmacokinetics to evaluate the potential of applying these molecules on in
vivo preclinical diagnosis and therapy of thrombus or using as antitumor agents.
官方说明文件#: NSC101-2627-M009-006
URI: http://hdl.handle.net/11536/98642
https://www.grb.gov.tw/search/planDetail?id=2664444&docId=400509
显示于类别:Research Plans