完整後設資料紀錄
DC 欄位語言
dc.contributor.author吳宗信en_US
dc.contributor.authorWU JONG-SHINNen_US
dc.date.accessioned2014-12-13T10:42:00Z-
dc.date.available2014-12-13T10:42:00Z-
dc.date.issued2011en_US
dc.identifier.govdocNSC99-2221-E009-056-MY2zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/98908-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2208146&docId=352558en_US
dc.description.abstract近年來,混���箭的研究已經在世界�地的引起極大的關注。主�是因為它具有高度安全性, 綠色推進特性和良好的比�值(例如,N2O �HTPB 組�:~250),因此其研發�本與其它如固態或液態 �箭推進方�相�低廉許多。�時,固態或液態�箭推進方�在技術上亦相��熟。這使得�去�年 中�箭研究領域產生一個極大的典範轉移(paradigm shift)。比如,世界上幾個著�的大學開始集中精 力開發他們自己具有特色的混���箭系統(hybrid rocket system),而�如�去一樣僅集中在零件級型 (component-level)的學術研究。��,其中混��推進次系統�然是最��的次系統之一,因其優劣直 接決定�箭大部份的性能。在此計畫中我們�擇了商業上易�得的N2O 與HTPB 分別當作氧化劑與 燃料。此外,空氣動力的優化與�箭飛行軌跡�測�一個�箭系統發展是一樣��的。因此,我們� 出的三年�計畫中有三個主�的目標,其中包括:1)��發展混���箭系統所�出的整�型計劃: � 瞻多功能混���箭系統研究與發,進行發展任務需求的混��推進次系統; 2)藉由模擬與實驗��� 箭推進與空氣動力進行研究探討數個��的�應與��應�場�題;3)進行數個�混���箭系統發 展相當��的跨領域研究。總之,我們�出以下為期三年的研究計劃: � 第一年  完�具推力控制且推力大於300 kgf 混���箭推進次系統(內�混�增強器�單節與單�� 設計)。  ��平行3D 計算�體力學進行模擬混��燃燒�因渦旋群集增強器所造�複雜�應��象 與推力增強,並以地�推力測試進行驗證。  利用CFD 模擬進行�測在縮�模型LITVC system 中複雜的暫態�象。  與��計畫三(avionics and flight control subsystems)利用地�測試進行節�閥控制推力的暫 態響應實驗。  利用component building up model 來建立具尾翼�構(單節設計�箭)的氣動力學資料庫。 �第二年 :  完�具推力控制且推力大於500 kgf 混���箭推進次系統(內�混�增強器�單節與單�� 設計)。  �續並深入��平行3D 計算�體力學進行模擬因渦旋群集增強器所造�複雜�應��象與 推力增強, 並以地�推力測試進行驗證。  利用CFD 模擬進行�測在全尺寸LITVC system 中複雜的暫態�象。  進行地�測試,來驗證第一年縮�模型LITVC 之模擬�果。  進行hybrid 空氣動力學設計(單節設計)�翼身��的�構設計(雙節設計)和利用CFD 模 擬來研究�翼/後翼之間�場相互干涉影響。 �第三年 :  完�具推力控制且推力大於1000 kgf 混���箭推進次系統(內�混�增強器�單節與單�� 設計)。第二節推力還待確定。  藉由地�測試來驗證全尺寸的LITVC system(因安全考�,將無真正的飛行測試)。  進行CFD 模擬兩節��箭分離情形且建議第二節的點�程�zh_TW
dc.description.abstractRecently, hybrid rocket research has attracted tremendous attention for several research institutes around the world, mainly because of its inherited high degree of safety, simplicity, green propulsion and good ISP, which results in relatively low development cost. Also, the technology is more or less matured in solid and liquid propulsion. This causes a clear paradigm shift in rocket research community. Several well-known universities began to focus on developing their own hybrid rocket systems, instead of solely focusing on component-level type research. Nevertheless, the hybrid propulsion subsystem is still one of the most important subsystems, which determines the rocket’s performance in general. Since nitrous oxide is self-pressurized, unlike LOX or others that requires complicated cryogenic pumping system, we have chosen commercially available nitrous oxide and HTPB as the oxidizer and fuel, respectively, in the proposed study. In addition, aerodynamics optimization of a rocket and 6-DOF flight trajectory prediction are both important subjects for a successful rocket system development, which will be addressed in this proposed subproject. Thus, we would like to propose a 3-year sub-project with three major objectives, which include: 1) to support the hybrid propulsion subsystem development as proposed in the integrated project, entitled “Development of an Advanced Multifunctional Hybrid Rocket�, 2) to explore several important fundamental reacting/non-reacting flow problems associated with hybrid rocket propulsion/aerodynamics through simulations and/or experiments, and 3) to conduct several inter-disciplinary researches that are critical to a success of the mission. In summary, we would like propose the following tasks in the 3-year period: � In the 1st year:  To deliver a single-stage, single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >300 kgf and thrust control.  To explore the complex reacting flow phenomena caused by the vortex clustering mixing enhancer through parallel 3D CFD simulations and to compare with ground thrust experiments.  To explore the complex transient phenomena in a model LITVC system by CFD simulations.  To understand the transient response of thrust control through valve throttling by ground experiments by collaborating with Subproject III (avionics and flight control).  To build up the aerodynamics database for fin-body configuration (single stage) using component building up model. � In the 2nd year:  To deliver a single-stage, single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >500 kgf and thrust control.  To further explore the complex reacting flow phenomena of proposed the vortex clustering mixing enhancer through parallel 3D CFD simulations and to compare with ground thrust experiments.  To understand the complex transient phenomena in a full-scale LITVC system by CFD simulations.  To conduct ground tests to validate the simulations of model LITVC system in the 1st year.  To conduct hybrid aerodynamics design (single-stage), wing-body-fin configuration design (two-stage) and CFD simulations to study the interaction between wings and fins. � In the 3rd year:  To deliver a two-stage single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >1000 kgf for the 1st stage and thrust control, while the thrust of the 2nd leaves TBD.  To validate full-scale LITVC system by ground tests (no real-flight test because of safety concern).  To conduct CFD flow simulations of stage separation for the two-stage rocket and to recommend the ignition sequence of the second stage.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.title混合式火箭前瞻推進次系統發展及空氣動力優化研究與發展zh_TW
dc.titleDevelopment of an Advanced Propulsion Subsystem and Aerodynamics Optimization for a Hybrid Rocketen_US
dc.typePlanen_US
dc.contributor.department國立交通大學機械工程學系(所)zh_TW
顯示於類別:研究計畫


文件中的檔案:

  1. 992221E009056MY2(第2年).PDF

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。