标题: | 奈米碳管网络薄膜电晶体与奈米碳管网络导电膜之研究 A Study on Carbon Nanotube Network Thin-Film Transistors and Carbon Nanotube Network Conduction Films |
作者: | 崔秉钺 Tsui Bing-Yue 国立交通大学电子工程学系及电子研究所 |
关键字: | 奈米碳管;碳管网络;薄膜电晶体;渗滤理论;carbon nanotube;carbon nanotube network;thin-film transistor;percolation theory |
公开日期: | 2011 |
摘要: | 自从 1991 年Iijima 发现奈米碳管(carbon nanotubes, CNTs)结构之后,由于其具有相当优異的电、 热、机械、化学性质,吸引了广泛的注意。单一单壁奈米碳管制作的碳管场效应电晶体应用在电子 工业是一长远的目标,短期或中期比较可能的应用是利用大量单壁奈米碳管的平均效应來降低元件 间的变異,亦即碳管网络薄膜电晶体。碳管网络薄膜电晶体虽然已经有數年的歷史,但是性能尚不 理想。渗濾理論已经证实可以描述碳管网络的导电能力,善用渗濾理論,搭配适当的制程条件以及 元件结构,有机会得到性能良好的碳管网络薄膜电晶体。同样善用渗濾理論,也可以得到导电率良 好的导电薄膜。因此本兩年期计画预计以高性能的碳管网络薄膜电晶体与导电膜为研究对象。 第一年度将先以渗濾理論计算碳管长度、密度、元件闸极长度、宽度对臨界长度的关系,据以决 定碳管涂布的条件,以及元件长度、宽度的设计范围,然后实际制作元件验证。本计画将以旋转涂布 方式制作碳管网络,以符合低温制程的需求。元件分为兩類,一为碳管网络薄膜电晶体(CNT NWTFT),一为碳管网络导电膜(CNT NWCF)。元件实作将以矽晶片为基板,元件结构以区域性背闸 极结构为主,以简化制程限制。第二年度计画重点是将第一年度开发之低温碳管网络薄膜电晶体和碳 管网络导电膜成果应用于透明可挠式基板,实现奈米碳管透明薄膜电晶体。此外,也深入分析碳管网 络导电膜的可靠度。 本计画如顺利执行,可以建立高良率、开关电流比之碳管网络透明薄膜电晶体,具软性电子产业 应用价值。亦可建立碳管网络导电膜技术,可制作超薄导电薄膜,在特定用途上取代金属薄膜。在过 程中所研究的课题,包括渗濾理論、载子传导机制、低温制程、可挠式基板制程、低温测试技术、微 区物性/化性分析等等,都具有学术及产业价值。 Since Iijima observed carbon nanotube (CNT) in 1991, CNT has attracted much attention because of its excellent electrical, thermal, mechanical, and chemical properties. The application of discrete single-walled CNT field effect transistor (SWNT FET) is a long term target. In medium and short term, using large amount of CNTs to minimize the device deviation, i.e., the CNT network thin-film transistor (CNT NWTFT) is more feasible. Although the CNT NWTFTs have been studied for several years, the characteristics are not good enough. It is known that the conductivity of the CNT NW can be modeled by the Percolation Theory. Using the percolation theory to design process conditions and device geometry may obtain high performance CNT NWTFTs. Similarly, using the percolation theory may also achieve high conductivity CNT network conduction films (CNT NWCFs). Therefore, we will focus on the CNT NWTFTs and CNT NWCFs. In the first year of this project, the percolation theory will be used to analysis the correlaton between the threshold length and the CNT length, the CNT density, the gate length, and the channel width. Real CNT NWTFTs will be designed and verified according to the analysis. In this project, the CNT NW will be formed by sequential spin-coating method to fulfill the requirement of low temperature process. Both CNT NWTFTs and CNT NWCFs will be fabricated on Si substrate in this year. Local bottom gate structure will be employed. In the second year, the low temperature CNT NWTFTs and CNT NWCFs will be fabricated on transparent flexible substrate to realize the total transparent CNT NW TFTs. The electromigration of the CNT NWCFs will be evaluated as well. In this project, we will setup the high yield, high on/off current ratio, and transparent CNT NW TFTs technology. This technology can be applied to the flexible electronics. This project will also setup the high yield and high conductivity CNT NWCFs technology for possibly replacing metal films at some special circumstances. The topics included in this project, the percolation theory, carrier transport, low temperature process, flexible substrate process, low temperature measurement, and micro area physical/chemical analysis, have both academic and practical values. |
官方说明文件#: | NSC100-2221-E009-010-MY2 |
URI: | http://hdl.handle.net/11536/99401 https://www.grb.gov.tw/search/planDetail?id=2326406&docId=364606 |
显示于类别: | Research Plans |