标题: | 低能隙高分子与其组成单元的阶级结构形成机制与光电物理性质关系之系统性分析与研究 A Systematic Study of the Hierarchical Structures and Optoelectronic Properties of Low Band Gap Conductive Polymers and Their Constituent Donor/Acceptor Units |
作者: | 王建隆 Wang Chien-Lung 国立交通大学应用化学系(所) |
关键字: | 低能隙高分子;阶级结构;超分子电子元件;有机场效电晶体;高分子太阳能电池;Low band gap conjugated polymers;Hierarchical structures;Supramolecular electronic;Organic field-effect transistors;Bulk heterojunction polymer solar cells |
公开日期: | 2011 |
摘要: | 低能隙(Low band gap)高分子为当前高效率bulk-heterojunction (BHJ) polymer solar cells (PSCs)与organic field-effect transistors (OFETs)中的重要单元, 在达成PSCs光电转换效率>8%与电荷载子迁移率(charge carrier mobility) > 5.5 cm2V-1s-1 (amorphous silica-based FETs)的过程中,微观分子结构与巨观元件效能间的桥梁-阶级结构(hierarchical structure)将扮演重要角色. 因此, 本计画将系统性的研究低能隙高分子与其组成单元,即电子施体(electron donor moiety, D)与电子受体(electron acceptor moiety, A),的阶级结构形成机制与其对元件效能的影响. 并藉由探讨分子结构,阶级结构与元件效能的关系,找寻提升元件效能的关键参数,以达到提升元件效能的目的. 低能隙高分子具有复杂的分子结构与分子间作用力.本研究将系统中牵涉到的变因(分子结构与物理作用力)进行拆解,并在三个层级上进行研究. 首先,针对低能隙高分子的主要组成单元进行研究. 探讨不同的架桥原子, 不同的侧链结构, 以及不同环数目的polycyclic aromatic结构, 对其排列行为以及元件效能的影响. 在第二阶段,利用耦合反应连接D, A单元以形成D-A, D-A-D,及A-D-A型态的共轭性分子, 藉此引入D, A单元并存的复杂分子结构与dipole-dipole分子间作用力, 来探讨低能隙高分子中重复单元(repeat units, i.e. D-A)的可能排列方式与其排列行为对元件性质的影响. 最后, 利用耦合反应将具有双官能基取代的D, A单元进行共聚反应, 以形成低能隙高分子. 在这个阶段的研究中, 将搭配在前两阶段中对D, A单元的阶级结构与元件效能的认识, 来解析低能隙高分子其高分子链的阶级结构形成机制,并透过对低能隙高分子规则结构的了解,来进一步提升当前BHJ PSCs与OFETs的元件效能. As a main component in the high performance bulk-heterojunction (BHJ) polymer solar cells (PSCs) and organic field-effect transistors (OFETs), wide varieties of low band gap (LBG) conjugated polymers have been developed. To further enhance the performances of BHJ PSCs and OFETs, and achieve > 8% power conversion efficiency (PCE) for PSCs and charge mobility > 5.5 cm2V-1s-1 (amorphous silica-based FETs) for the OFETs. The hierarchical structures of a series of specifically designed LBG polymers, and their constituent Donor/Acceptor units will be synthesized and studied. The study is aimed to identify the relationships among molecular structure, hierarchical structure and device performance of LBG polymers, and find out the key parameters for improving the device performances of PSCs and OFETs. LBG polymers possess complicate molecular structures and intermolecular interactions. In this proposal, we break down the molecular structures of LBG polymers and study the relationships among molecular structures, hierarchical structures, and device performances at three stages. At first stage, how the hierarchical structures and device performances are affected by (1) the length of π conjugating systems, (2) the types of the bridge atoms, and (3) the side chain structures of the donor units will be studied. At the second stage, D-A, D-A-D and A-D-A type conjugated molecules will be synthesized to introduce complex molecular structures and intermolecular interactions into the molecular systems. This part of study focus on finding out the preferred arrangements of the repeating units of LBG polymers in their ordered structures. At the finally stage, a series of LBG polymers will be synthesized and characterized. The formation mechanism of the hierarchical structures of the LBG polymers will be carefully studied and analyzed based on the understanding of the D/A type small molecules obtained from the first two stages. To achieve PCEs > 8% and charge mobilities > 5.5 cm2V-1s-1, the PSCs and OFETs performance will be optimized based on the conditions of forming well-defined hierarchical structures of LBG polymers. |
官方说明文件#: | NSC100-2221-E009-152-MY3 |
URI: | http://hdl.handle.net/11536/99460 https://www.grb.gov.tw/search/planDetail?id=2372197&docId=375456 |
显示于类别: | Research Plans |