标题: 宽能隙半导体微共振腔元件之研究
Study of Wide-Bandgap Semiconductor Microcavity Devices
作者: 卢廷昌
Lu Tien-chang
国立交通大学光电工程学系(所)
关键字: 微共振腔;极化子;氮化镓;氧化锌
公开日期: 2011
摘要: 本计划目的在于使用宽能隙半导体材料如氮化镓或氧化锌制作微共振腔元件以探讨光
与物质间的强耦合作用以及微共振腔中极化子之特性并制作出实用化的新型量子光电
元件。微共振腔极化子是一种半光半物质(激子)的一种准粒子,其波色子的特性以及利
用最终态散射将可以在中达到单一态的动态玻色-爱因斯坦凝聚,而由于宽能隙半导体
材料通常具有较大的激子束缚能以及振子强度,因此本计画将会利用微共振腔极化子
的玻色子特性在氧化锌微共振腔中达到室温操作的玻色-爱因斯坦凝聚态,此种玻色-
爱因斯坦凝聚态可以实现一种极低臨界能量密度的新型极化子雷射,为一种不需要达
到居量反转即可产生同调光的低功耗光电元件。我们也利用共振激发的机制将氧化锌
微共振腔元件操作在特定之极化子散射的条件下,利用极化子之受激散射达成室温操
作并具有极低阈值条件之微光參量振荡器元件。本计画也将氮化镓微共振腔元件制作
成电激发的极化子发光二极体,利用快速的拉比振荡改善发光二极体非輻射再结合所
引起的内部量子效率低落的问题,以迈向实用化极化子元件之目标。
The main purpose of this project is to use wide-bandgap materials such as ZnO and GaN to
observe the strong light-matter coupling interaction and microcavity polariton behavior and
to develop practical and novel quantum optoelectronics. Microcavity polariton composing of
photon and exciton is a half-light/half matter quasi-particle. The bosonic characteristics can
achieve the dynamic Bose-Einstein condensation in the microcavity device through the final
state scattering. On the other hand, the large exciton binding energy and oscillator strength of
wide bandgap materials could allow the Bose-Einstein condensation operating at the room
temperature. Within the three years, we plan to achieve room temperature dynamic
Bose-Einstein condensation and an ultralow-threshold polariton laser in the ZnO-based
microcavity. Polariton laser is a low threshold coherent light source which doesn’t require
population inversion. We also plan to operate the ZnO-based microcavity at stimulated
scattering regime by using resonant pumping technique to demonstrate a room temperature
micro-OPO with ultra-low threshold compared to traditional χ(2) nonlinear optical
material-based OPO. Toward a practical polariton device, this project would use GaN to
realize a high efficiency current injection polariton GaN LED operated at room temperature
since fast Rabi oscillation in the strong coupling regime could efficiently suppress the
non-radiative recombination thus to enhance the internal quantum efficiency. In addition, the
significantly lower density of states of polaritons makes extra low-threshold current injection
polariton lasers possible as compared to conventional semiconductor lasers based on GaN
materials
官方说明文件#: NSC100-2628-E009-013-MY3
URI: http://hdl.handle.net/11536/99521
https://www.grb.gov.tw/search/planDetail?id=2340336&docId=368705
显示于类别:Research Plans