完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃俊達en_US
dc.contributor.authorHuang Juinn-Daren_US
dc.date.accessioned2014-12-13T10:43:00Z-
dc.date.available2014-12-13T10:43:00Z-
dc.date.issued2011en_US
dc.identifier.govdocNSC100-2220-E009-027zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/99541-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2312733&docId=361577en_US
dc.description.abstract隨著製程技術的發展,電路設計也越來越複雜,設計者必須依賴電子設計自動化軟體的輔助。另一方面,隨著製程技術的演進,電路受到製程變異的影響也越來越大。在過去的電子設計自動化當中,晶片設計的流程中通常沒有考慮製程變異,而是單純的以最糟的情形去分析晶片的效能,導致所設計的晶片可能過於悲觀。然而,如果能以隨機性的機率模型模擬晶片實際生產時的變異性,例如使用統計靜態時序分析 (SSTA)的技巧,在設計晶片時,將能在效能與良率之間取得最佳的平衡。在這個計畫裡,我們期望在電子設計流程中,除了考慮面積最小化外,還要納入製程變異的考慮。在第一年的目標中,我們針對高速通訊系統中常用之訊號處理系統如有限脈衝響應濾波器(FIR filter),發展考慮最長路徑延遲最佳化之多常數乘法器(MCM)自動合成器。我們用整數線性規畫法(ILP)和二進位共用項分享技術來達到多重常數乘法器的延遲和面積最佳化,並且同時地利用進位前瞻加法器(CLA)與進位儲存加法器(CSA)來實現加法架構。且我們的方法會找出所有可能的二進位共用項來與目標配對。在實驗部分,我們的方法與先前文獻的作法相比,在面積與延遲上都有更好的表現。zh_TW
dc.description.abstractDue to the growing design complexity in nowadays digital system, designers rely on electronic design automation (EDA) tools more. Meanwhile, the process variation has been proven to be a critical problem in advanced technologies. Traditionally, variation problems were not considered. The worst case timing was applied to estimate the chip performance in IC design. However, if we can apply the stochastic model for the process variation, for example, applying statistic static timing analysis (SSTA) for timing analyzing, we can obtain a better balance between chip performance and performance yield during chip design.In this project, we wish to apply the process variation consideration besides of area minimization. In the first year stage, our target is for the finite impulse response (FIR) filter in high speed communication systems. We will develop a multiple constant multiplier (MCM) with longest path delay minimization for these systems.We present an integer linear programming (ILP) based approach for delay and area-optimal binary subexpression sharing for MCM design which uses different adder architectures (i.e., carry look-ahead adder and carry save adder) simultaneously. The proposed method exploits patterns acquired from all possible symbols (also known as subexpressions) to match the target MCM design optimally. The experimental results show that the proposed algorithm can achieve significant performance improvement as compared with the prior art.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject電子設計自動化zh_TW
dc.subject製程變異zh_TW
dc.subject統計靜態時序分析zh_TW
dc.subject有限脈衝響應濾波器zh_TW
dc.subject整數線性規畫法zh_TW
dc.subject多常數乘法器進位zh_TW
dc.subject前瞻加法器zh_TW
dc.subject進位儲存加法器zh_TW
dc.subjectelectronic design automation(EDA)en_US
dc.subjectprocess variationen_US
dc.subjectstatistic static timing analysis(SSTA)en_US
dc.subjectfinite impulse response (FIR)en_US
dc.subjectinteger linear programming (ILP)en_US
dc.subjectmultiple constant multiplication (MCM)en_US
dc.subjectcarry look-ahead adder(CLA)en_US
dc.subjectcarry save adder(CSA)en_US
dc.title次世代智慧室內無線五十億級位元傳輸率之基頻傳收機技術應用與隨機運算IP-子計畫三:針對通訊數位訊號處理器從功能單元層級到系統層級之可靠性驅策的隨機性合成技術( I )zh_TW
dc.titleReliability-Driven Stochastic Synthesis Technology from Functional Unit Level to System Level for Communication Dspen_US
dc.typePlanen_US
dc.contributor.department國立交通大學電子工程學系及電子研究所zh_TW
顯示於類別:研究計畫