完整後設資料紀錄
DC 欄位語言
dc.contributor.author吳慶堂en_US
dc.contributor.authorWu Ching-Tangen_US
dc.date.accessioned2014-12-13T10:43:06Z-
dc.date.available2014-12-13T10:43:06Z-
dc.date.issued2011en_US
dc.identifier.govdocNSC100-2115-M009-002zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/99590-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2334137&docId=366887en_US
dc.description.abstract在此計畫中我們想考慮一組布朗運動的線性轉換的性質. 與一般考慮情形不同之處在於此組線性轉換為連續型的狀況.當布朗運動經此線性轉換後仍為布朗運動且所生成的 filtration 有變小的情形時, 能否將原本的布朗運動的 Brownian filtration化成orthogonal decomposition是我們比較感興趣的問題. 此外, 這個orthogonal decomposition是finite亦或是infinite, 遍歷性質如何, 是我們想探討的主題之一.zh_TW
dc.description.abstractIn this project we are mainly concerned with a group of linear transforms of Brownian motion and the related properties. If the resulting stochastic processes are again Brownian motions and whose Brownian filtration is strictly smaller than the original Brownian filtration, we aim to investigate the orthogonal decomposition of the original Brownian filtration. Moreover, the ergodic property of the resulting stochastic processes is also one of our main discussion points.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject布朗運動zh_TW
dc.subject布朗filtrationzh_TW
dc.subject遍歷性質zh_TW
dc.subject正交分解.zh_TW
dc.subjectBrownian motionen_US
dc.subjectBrownian filtrationen_US
dc.subjectergodic propertyen_US
dc.subjectorthogonal decomposition.en_US
dc.title連續時間 filtration 的正交分解zh_TW
dc.titleOrthogonal Decomposition of Filtration in Continuous Timeen_US
dc.typePlanen_US
dc.contributor.department國立交通大學應用數學系(所)zh_TW
顯示於類別:研究計畫


文件中的檔案:

  1. 1002115M009002.PDF

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。