Full metadata record
DC FieldValueLanguage
dc.contributor.author黃慧玲en_US
dc.contributor.authorHunag Hui-Lingen_US
dc.date.accessioned2014-12-13T10:44:37Z-
dc.date.available2014-12-13T10:44:37Z-
dc.date.issued2010en_US
dc.identifier.govdocNSC99-2221-E009-137zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/100065-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2118552&docId=338958en_US
dc.description.abstract本計畫「以蛋白質序列物化特性為特徵的蛋白質激酶磷酸化位置預測方法與分析」旨在提 出一套高效能的智慧型基因演算法來擷取蛋白質序列物化特性做為特徵,例用支持向量迴歸方 法來預測蛋白質相對溶劑可接觸性(RSA,代表蛋白質上某一氨基酸和溶劑接觸程度),並例用支 持向量機與物化特性及RSA 預測值來預測蛋白質激酶磷酸化位置。一般結合處是在蛋白質的 表面,因此氨基酸位於表面程度與氨基酸的物化特性有相關,也是預測蛋白質殘基溶劑可接觸 性的重要特性。本計畫提出一個二階段探勘與分析序列物化特性來設計利用溶劑可接觸性面積 輔助預測磷酸化發生位置的方法。由於蛋白質序列物化特性的可解讀性高,故可分析RSA 與 磷酸化的物化特性差異性。本計劃將特別以實驗室驗證磷酸化發生的位置的蛋白質序列-瞬時 感受電位第四號TRPV4 做為分析標的物,作一預測系統以提供驗證。zh_TW
dc.description.abstractThe one-year project, prediction and analysis of identifying protein kinase-specific phosphorylation sites based on the features of physicochemical properties of sequences, aims to develop a set of high-performance intelligent genetic algorithms for mining physicochemical properties of sequences as features to design two prediction methods. The first method uses support vector regression with the physicochemical features to predict relative surface area (RSA) of solvent accessibility. The second method uses support vector machine with the physicochemical features to predict protein kinase-specific phosphorylation sites. The RSA value plays an important role in developing explicit models for aiding prediction of the phosphorylation sites. Therefore, the project proposes a two-step prediction method using the predicted RSA value of step 1 as an additional important feature to predict phosphorylation sites. Due to the high interpretability of physicochemical properties as features, the study will analyze the similarity and difference of physicochemical properties to understand the mechanism of phosphorylation. Furthermore, the project would develop a prediction platform to verify known proteins with phosphorylation sites, such as transient receptor potential vanilloid subfamily member 4 (TRPV4).en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject物化特性zh_TW
dc.subject蛋白質激?磷酸化zh_TW
dc.subject基因演算法zh_TW
dc.subject溶劑可接觸性zh_TW
dc.subject蛋白質序列zh_TW
dc.subject預測方法zh_TW
dc.subjectPhysicochemical propertiesen_US
dc.subjectkinase-specific phosphorylationen_US
dc.subjectgenetic algorithmsen_US
dc.subjectrelative surface area of solvent accessibilityen_US
dc.subjectprotein sequenceen_US
dc.subjectprediction method.en_US
dc.title以蛋白質序列物化特性為特徵的蛋白質激Kinase-Specific磷酸化位置預測方法與分析zh_TW
dc.titlePrediction and Analysis of Identifying Protein Kinase-Specific Phosphorylation Sites Based on the Features of Physicochemical Properties of Sequencesen_US
dc.typePlanen_US
dc.contributor.department國立交通大學生物科技學系(所)zh_TW
Appears in Collections:Research Plans


Files in This Item:

  1. 992221E009137.PDF

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.