標題: | 高度不均勻介質中的橢圓形方程與拋物線方程的數值誤差分析 Numerical Error Analysis for Elliptic and Parabolic Equations in Highly Heterogeneous Media |
作者: | 葉立明 YEH LI-MING 國立交通大學應用數學系(所) |
關鍵字: | 非均勻?物線方程式;導數的均勻估計;Non-uniform elliptic equation;uniform gradient estimate |
公開日期: | 2010 |
摘要: | 這是一個二年期的計劃。我們希望探討計算非均勻橢圓
方程式與非均勻抛物線方程式的方法及這計算方法的誤差
估計問題。以污染源(如化學工廠排放的廢水,核電廠的廢
棄物等) 在地底下的擴散為例。地底下的縫隙結構與地質性
質在不同的位置就有很大的差異,並且污染源擴散時在污染
源的附近或較遠處會有平流與對流現象發生。因此描述此現
象的數學模式就包含了非均勻橢圓方程式與非均勻抛物線
方程式。若是能發展出有效率的計算方法,則可借用計算機
的計算功能幫助我們更清楚了解多孔介質中的多相流在微
觀模式下的細微變化。
之前的計劃大多討論描述多相流的微觀模式與其宏觀
模式之間的關係,也了解一些多相流的微觀模式的均勻收斂
的結果。若是能夠有效率的計算多相流的微觀模式的解。對
多相流在多孔介質中的運動一定能有更進一步的了解。 This is a two-year project. We plan to find efficient numerical schemes to compute the solutions of non-uniform elliptic equations and non-uniform parabolic equations. The contaminant transportation and the multi-phase flows in highly heterogeneous media are strongly related to the geology of soil and are complicated. Flows in the media may show many different time-scale phenomenon. Their corresponding microscopic models usually consist of convection and diffusion equations. In other words, their mathematical models contain non-uniform elliptic equations and non-uniform parabolic equations. Therefore, this research helps understanding waste contaminant transport in soil and flows in porous media. In previous projects, we studied models for multi-phase flow problems in microscopic level and in macroscopic level. We also derive uniform estimates for solutions of non-uniform elliptic equations. If it is possible to develop highly efficient numerical schemes to compute the solutions of non-uniform elliptic equations and non-uniform parabolic equations, we then have powerful tools to tackle multi-phase flow problem in porous media. |
官方說明文件#: | NSC99-2115-M009-009-MY2 |
URI: | http://hdl.handle.net/11536/100083 https://www.grb.gov.tw/search/planDetail?id=2131132&docId=341841 |
顯示於類別: | 研究計畫 |