标题: 新世代光纤载微波系统与技术之整合研究---子计画一:W-频带微波光纤通信系统
W-Band Radio-over-Fiber System
作者: 陈智弘
Chen Jye hong
国立交通大学光电工程学系(所)
关键字: 光调制模式;光纤到家;微波光学;混成光纤撷取网路;radio-over-fiber;modulation format;FTTH;OFDM;microwave photonics
公开日期: 2010
摘要: 无线通信的歷史非常的悠久,在约100 年前,Marconi 提出无线通信的概念之后,在100
年内,由于 IC 的进步,终于使得个人化的无线通信得以实现。随着对无线传输的需求大量
的增加,对于能够提供大量传输无线信号的系统逐渐受到大家广泛的注意。在最近几年对于
超高速的无线通信系统 (> 1Gbps)的研究更是在加速的进行。以60 GHz 的系统为例,最近所
提出正在制定的标准就有: IEEE 802.15.3c, ECMA TC48 (ECMA 387), wireless HD/HDMI, Wigig,
IEEE 802.11 VHT 等等。而对60 GHz 的 IC 研究,不論是在以 SiGe 或是以 CMOS,都有明显
显着的进步。在商品化方面,有已经有产品问世 (http://www.sibeam.com)。但是60 GHz 的
主要应用是短距離的无线传输 (<20m),因此对一般距離 (1~2 km)需要大量资讯量的无线传
输,仍然是十分缺乏。因此以 W‐band 为主的传输系统,不但能够传输HD 画质的影音信号,
无线传输距離也可以达到 1‐5 km。就成为能够满足此一需求的最佳系统。
而有线截取网路 (wireline access network) 的演进是由xDSL、到各种规格的 PON (passive
optical network, broadband‐PON, Gigabit‐PON, and Ethernet‐PON)。其目标是为了提供使用者所
谓的triple‐play services (voice, video and internet)。然而有线网路虽然能提供宽频服务,但是
无法满足使用者需要 anytime, anywhere 的机动性 (mobility) 要求。另外一方面,无线网路
虽然能提供非常好的机动性,但是由于频宽的限制,无法完全满足使用者所需要的宽频服务。
为了因应此发展,最好的解决方法之一就是使用光纤当作传输媒介,同时传送有线与无线的
撷取服务。让网路能更接近使用者,來解决频宽不足的困境。以光纤为主干的通讯系统不但
可以有效的舒缓目前无线通讯频宽不足的窘境,也是目前所知最能满足未來频宽要求 (future
proof) 的传输媒介。因此整合光纤到家 (fiber‐to‐the‐home, FTTH 提供 triple‐play services,
voice, video and internet) 以及radio‐over‐fiber (ROF, 提供无线的语音以及网路服务) 的混成
光纤撷取网路架构 (hybrid optical access network) 已经逐渐被大家所认可是最具有经济效益
的网路架构。因此在本计画中,我们将提出W‐band RoF 的系统实验,來验证并且建立一个
高速 (> 4Gbps)、远距 (>2 km) 的无线传输系统。
The tremendous increase in the necessary bandwidth of wireless data‐transmission has attracted
attention on ways to use the millimeter wave (MMW) bands at 60 GHz (V‐band) or above 100 GHz
(W‐band) as the carrier frequency for the realization of systems with very high transmission data
rates over many gigabits‐per‐second. Several ways to realize such a system have been proposed.
By using the mature CMOS integrated‐circuit (IC) technology, a V‐band transceiver module, which
includes a printed‐circuit antenna, a 60GHz power amplifier, a local oscillator (LO), and an
envelope detector, has been demonstrated (http://www.sibeam.com). However, a large
propagation loss of the MMW signal occurs in the W‐band or V‐band frequencies, whether in free
space or in coaxial cable and the connection or synchronization between different transmitters
thus become a serious issue by use of such technique especially when there are several emitters
in the system. A promising solution to overcome such problem is the radio‐over‐fiber (ROF)
technique, in which the MMW LO signal and data are both distributed through a low‐loss optical
fiber and then radiated over the last‐mile to the end‐user. In this project, to generate MMW
signals that support even higher frequency applications, a filterless optical MMW signal
generation system with frequency octupling is proposed. Two cascaded frequency quadrupling
systems are keys to the proposed octupling system. The W‐band 100‐GHz MMW signals are
experimentally demonstrated in this work. Since no narrow band optical filter is required, the
proposed system can also be used in WDM systems.
The idea of utilizing the nonlinearity of high‐speed PDs to serve as the optoelectronic (OE) mixer,
such as UTC‐PDs, and realize this up‐conversion process is very attractive, because this could
eliminate the necessity of the high‐frequency electronic mixer or E‐O modulator. Compared to the
p‐i‐n PD based OE mixer, the UTC‐PD based OE mixer has much lower up‐conversion loss and
higher up‐converted RF power due to its superior high‐speed and high‐power performance to
p‐i‐n PDs. However, such a technique requires the UTC‐PD to be under zero‐bias and the AC
voltage amplitude swings the device into forward bias regime, which may seriously limit the
modulation bandwidth. By inserting an additional p‐type charge layer into the collector layer to
control the electrical field, a higher electron drift‐velocity, higher saturation‐current bandwidth
product, than those of reported UTC‐PD have been achieved. Furthermore, NBUTC‐PDs based OE
mixers and photonic transmitter‐mixers have demonstrated low up‐conversion loss, wide
modulation bandwidth, and QPSK wireless data transmission at W‐band (100 GHz) under bias
modulation without using the forward bias operation to enhance the nonlinearity as for the case
of UTC‐PD. In this project, we will demonstrate a >4Gbps, > 2 km 100 GHz RoF system based on
UTC‐PD with integrated antenna design.
官方说明文件#: NSC99-2221-E009-046-MY3
URI: http://hdl.handle.net/11536/100187
https://www.grb.gov.tw/search/planDetail?id=2119660&docId=339219
显示于类别:Research Plans