Full metadata record
DC FieldValueLanguage
dc.contributor.author許元春en_US
dc.contributor.authorSHEU YUAN-CHUNGen_US
dc.date.accessioned2014-12-13T10:44:55Z-
dc.date.available2014-12-13T10:44:55Z-
dc.date.issued2010en_US
dc.identifier.govdocNSC99-2115-M009-010zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/100208-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2124418&docId=340326en_US
dc.description.abstract我們探討跳躍隨機過程及其應用。特別的我們研究矩陣型跳 躍擴散過程第一次離開有限區段的泛函問題。我們除了希望得到 此泛函的詳細表示式外也將探討其在邊界的微分表示式。解決上 述這些問題,將有效的協助我們回答一些新奇選擇權的定價及最 佳執行點問題。zh_TW
dc.description.abstractGiven a two-sided matrix exponent jump-diffusion process, we consider a first exit functional of the process from a finite interval. As in our previous works, we will try to derive explicit solutions for the functionals and study its first derivatives on each of its boundaries. These studies will make it possible for exotic option pricing in the general jump process modelling. Also by imposing the smooth pasting assumption, which is always assumed in applied fields such as economics and finance, we can determine the optimal levels for these exotic options. The Novikov-Shiryaev optimal stopping problem is also touched for general Lèvy processes.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject關鍵字:跳躍-擴散模型(Jump-Diffusion Model)zh_TW
dc.subject混合指數分配(Mixture ofzh_TW
dc.subjectjump-diffusionen_US
dc.subjectmixture of exponential distributionsen_US
dc.subjectperpetual American strangleen_US
dc.subjectfree boundary problemen_US
dc.subjectsmooth pasting conditionen_US
dc.title跳躍過程及其應用zh_TW
dc.titleJump Processes with Applicationsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學應用數學系(所)zh_TW
Appears in Collections:Research Plans


Files in This Item:

  1. 992115M009010.PDF

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.