Title: 雙邊最佳停止問題和永續美式勒式選擇權
Two-Sided Optimal Stopping Problems and The Perpetual American Strangle Options
Authors: 張明淇
許元春
應用數學系所
Keywords: 超指數型跳躍擴散隨機過程;永續美式勒式選擇權;最佳停止時間問題;自由邊界問題;hyper-exponential jump-diffusion Levy process;perpetual American strangle option;optimal stopping problem;free boundary problem
Issue Date: 2012
Abstract: 本論文在研究永續美式勒式選擇權在超指數型跳躍擴散模型下的定價問題。利用自由邊界問題的方法,我們解決了所對應之最佳停止時間問題,並且求出永續美式勒式選擇權的合理價格。此外,我們也證明了自由邊界問題再加上平滑銜接條件的解之存在性。
This study investigates the problem of pricing perpetual American strangle option under a hyper-exponential jump-diffusion model. By using the free boundary problem approach, we solve the corresponding optimal stopping problem and determine the rational price of the perpetual American strangle options. In particular, we prove the existence of solutions to the free boundary problems with the smooth pasting conditions.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079422805
http://hdl.handle.net/11536/40829
Appears in Collections:Thesis


Files in This Item:

  1. 280501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.