标题: | 双边最佳停止问题和永续美式勒式选择权 Two-Sided Optimal Stopping Problems and The Perpetual American Strangle Options |
作者: | 张明淇 许元春 应用数学系所 |
关键字: | 超指数型跳跃扩散随机过程;永续美式勒式选择权;最佳停止时间问题;自由边界问题;hyper-exponential jump-diffusion Levy process;perpetual American strangle option;optimal stopping problem;free boundary problem |
公开日期: | 2012 |
摘要: | 本论文在研究永续美式勒式选择权在超指数型跳跃扩散模型下的定价问题。利用自由边界问题的方法,我们解决了所对应之最佳停止时间问题,并且求出永续美式勒式选择权的合理价格。此外,我们也证明了自由边界问题再加上平滑衔接条件的解之存在性。 This study investigates the problem of pricing perpetual American strangle option under a hyper-exponential jump-diffusion model. By using the free boundary problem approach, we solve the corresponding optimal stopping problem and determine the rational price of the perpetual American strangle options. In particular, we prove the existence of solutions to the free boundary problems with the smooth pasting conditions. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079422805 http://hdl.handle.net/11536/40829 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.