Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Chun-Feien_US
dc.contributor.authorChen, Guan-Mingen_US
dc.contributor.authorLee, Tsu-Tianen_US
dc.date.accessioned2014-12-08T15:12:59Z-
dc.date.available2014-12-08T15:12:59Z-
dc.date.issued2007-12-01en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2007.01.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/10026-
dc.description.abstractThis paper proposes a robust intelligent tracking controller (RITC) for a class of unknown nonlinear systems. The proposed RITC system is comprised of a neural controller and a robust controller. The neural controller is designed to approximate an ideal controller using a proportional-integral-derivative (PID)-type learning algorithm in the sense of Lyapunov function, and the robust controller is designed to achieve L-2 tracking performance with desired attenuation level. Finally, to investigate the effectiveness of the RITC system, the proposed design methodology is applied to control two chaotic dynamical systems. The simulation results verify that the proposed RITC system using PID-type learning algorithm can achieve faster convergence of the tracking error and controller parameters than that using I-type learning algorithm. (c) 2007 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectadaptive controlen_US
dc.subjectneural network controlen_US
dc.subjectrobust controlen_US
dc.subjectLyapunov functionen_US
dc.subjectchaotic dynamic systemen_US
dc.titleRobust intelligent tracking control with PID-type learning algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2007.01.002en_US
dc.identifier.journalNEUROCOMPUTINGen_US
dc.citation.volume71en_US
dc.citation.issue1-3en_US
dc.citation.spage234en_US
dc.citation.epage243en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000251500600023-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000251500600023.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.