Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 吳宗信 | en_US |
dc.contributor.author | WU JONG-SHINN | en_US |
dc.date.accessioned | 2014-12-13T10:46:10Z | - |
dc.date.available | 2014-12-13T10:46:10Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.govdoc | NSC99-2221-E009-056-MY2 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/100670 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=2102073&docId=335434 | en_US |
dc.description.abstract | 近年來,混å�ˆå¼�ç�«ç®çš„ç ”ç©¶å·²ç¶“åœ¨ä¸–ç•Œå�„地的引起極大的關注。主è¦�æ˜¯å› ç‚ºå®ƒå…·æœ‰é«˜åº¦å®‰å…¨æ€§ï¼Œ ç¶ è‰²æŽ¨é€²ç‰¹æ€§å’Œè‰¯å¥½çš„æ¯”è¡�值(例如,N2O å�ŠHTPB 組å�ˆ:~250)ï¼Œå› æ¤å…¶ç ”發æˆ�本與其它如固態或液態 ç�«ç®æŽ¨é€²æ–¹å¼�相å°�低廉許多。å�Œæ™‚,固態或液態ç�«ç®æŽ¨é€²æ–¹å¼�在技術上亦相å°�æˆ�熟。這使得é�ŽåŽ»å��å¹´ ä¸ç�«ç®ç ”ç©¶é ˜åŸŸç”¢ç”Ÿä¸€å€‹æ¥µå¤§çš„å…¸ç¯„è½‰ç§»(paradigm shift)。比如,世界上幾個著å��的大å¸é–‹å§‹é›†ä¸ç²¾ 力開發他們自己具有特色的混å�ˆå¼�ç�«ç®ç³»çµ±(hybrid rocket system),而é�žå¦‚é�ŽåŽ»ä¸€æ¨£åƒ…集ä¸åœ¨é›¶ä»¶ç´šåž‹ (component-level)çš„å¸è¡“ç ”ç©¶ã€‚ä¸�é�Žï¼Œå…¶ä¸æ··å�ˆå¼�推進次系統ä»�然是最é‡�è¦�çš„æ¬¡ç³»çµ±ä¹‹ä¸€ï¼Œå› å…¶å„ªåŠ£ç›´ 接決定ç�«ç®å¤§éƒ¨ä»½çš„性能。在æ¤è¨ˆç•«ä¸æˆ‘們é�¸æ“‡äº†å•†æ¥ä¸Šæ˜“å�–å¾—çš„N2O 與HTPB 分別當作氧化劑與 燃料。æ¤å¤–,空氣動力的優化與ç�«ç®é£›è¡Œè»Œè·¡é �測å°�一個ç�«ç®ç³»çµ±ç™¼å±•æ˜¯ä¸€æ¨£é‡�è¦�çš„ã€‚å› æ¤ï¼Œæˆ‘們æ�� 出的三年å�計畫ä¸æœ‰ä¸‰å€‹ä¸»è¦�的目標,其ä¸åŒ…括:1)é…�å�ˆç™¼å±•æ··å�ˆå¼�ç�«ç®ç³»çµ±æ‰€æ��出的整å�ˆåž‹è¨ˆåŠƒ: å‰� 瞻多功能混å�ˆå¼�ç�«ç®ç³»çµ±ç ”究與發,進行發展任務需求的混å�ˆå¼�推進次系統; 2)藉由模擬與實驗é‡�å°�ç�« ç®æŽ¨é€²èˆ‡ç©ºæ°£å‹•åŠ›é€²è¡Œç ”究探討數個é‡�è¦�çš„å��應與é�žå��應æµ�å ´å•�é¡Œ;3)進行數個å°�æ··å�ˆå¼�ç�«ç®ç³»çµ±ç™¼ 展相當é‡�è¦�çš„è·¨é ˜åŸŸç ”ç©¶ã€‚ç¸½ä¹‹ï¼Œæˆ‘å€‘æ��å‡ºä»¥ä¸‹ç‚ºæœŸä¸‰å¹´çš„ç ”ç©¶è¨ˆåŠƒ: â—� 第一年  完æˆ�具推力控制且推力大於300 kgf æ··å�ˆå¼�ç�«ç®æŽ¨é€²æ¬¡ç³»çµ±(å…§å�«æ··å�ˆå¢žå¼·å™¨ã€�單節與單æµ�é�“ è¨è¨ˆ)。  é€�é�Žå¹³è¡Œ3D 計算æµ�體力å¸é€²è¡Œæ¨¡æ“¬æ··å�ˆå¼�燃燒å¼�å› æ¸¦æ—‹ç¾¤é›†å¢žå¼·å™¨æ‰€é€ æˆ�複雜å��應æµ�ç�¾è±¡ 與推力增強,並以地é�¢æŽ¨åŠ›æ¸¬è©¦é€²è¡Œé©—è‰ã€‚  利用CFD 模擬進行é �測在縮å°�模型LITVC system ä¸è¤‡é›œçš„æš«æ…‹ç�¾è±¡ã€‚  與å�¦å�計畫三(avionics and flight control subsystems)利用地é�¢æ¸¬è©¦é€²è¡Œç¯€æµ�閥控制推力的暫 態響應實驗。  利用component building up model 來建立具尾翼çµ�構(單節è¨è¨ˆç�«ç®)的氣動力å¸è³‡æ–™åº«ã€‚ â—�第二年 :  完æˆ�具推力控制且推力大於500 kgf æ··å�ˆå¼�ç�«ç®æŽ¨é€²æ¬¡ç³»çµ±(å…§å�«æ··å�ˆå¢žå¼·å™¨ã€�單節與單æµ�é�“ è¨è¨ˆ)。  æŒ�續並深入é€�é�Žå¹³è¡Œ3D 計算æµ�體力å¸é€²è¡Œæ¨¡æ“¬å› æ¸¦æ—‹ç¾¤é›†å¢žå¼·å™¨æ‰€é€ æˆ�複雜å��應æµ�ç�¾è±¡èˆ‡ 推力增強, 並以地é�¢æŽ¨åŠ›æ¸¬è©¦é€²è¡Œé©—è‰ã€‚  利用CFD 模擬進行é �測在全尺寸LITVC system ä¸è¤‡é›œçš„æš«æ…‹ç�¾è±¡ã€‚  進行地é�¢æ¸¬è©¦ï¼Œä¾†é©—è‰ç¬¬ä¸€å¹´ç¸®å°�模型LITVC 之模擬çµ�果。  進行hybrid 空氣動力å¸è¨è¨ˆï¼ˆå–®ç¯€è¨è¨ˆï¼‰ã€�翼身èž�å�ˆçš„çµ�構è¨è¨ˆï¼ˆé›™ç¯€è¨è¨ˆï¼‰å’Œåˆ©ç”¨CFD 模 æ“¬ä¾†ç ”ç©¶å‰�翼/後翼之間æµ�å ´ç›¸äº’å¹²æ¶‰å½±éŸ¿ã€‚ â—�第三年 :  完æˆ�具推力控制且推力大於1000 kgf æ··å�ˆå¼�ç�«ç®æŽ¨é€²æ¬¡ç³»çµ±(å…§å�«æ··å�ˆå¢žå¼·å™¨ã€�單節與單æµ�é�“ è¨è¨ˆ)。第二節推力還待確定。  藉由地é�¢æ¸¬è©¦ä¾†é©—è‰å…¨å°ºå¯¸çš„LITVC systemï¼ˆå› å®‰å…¨è€ƒé‡�,將無真æ£çš„飛行測試)。  進行CFD 模擬兩節å¼�ç�«ç®åˆ†é›¢æƒ…形且建è°ç¬¬äºŒç¯€çš„點ç�«ç¨‹åº� | zh_TW |
dc.description.abstract | Recently, hybrid rocket research has attracted tremendous attention for several research institutes around the world, mainly because of its inherited high degree of safety, simplicity, green propulsion and good ISP, which results in relatively low development cost. Also, the technology is more or less matured in solid and liquid propulsion. This causes a clear paradigm shift in rocket research community. Several well-known universities began to focus on developing their own hybrid rocket systems, instead of solely focusing on component-level type research. Nevertheless, the hybrid propulsion subsystem is still one of the most important subsystems, which determines the rocket’s performance in general. Since nitrous oxide is self-pressurized, unlike LOX or others that requires complicated cryogenic pumping system, we have chosen commercially available nitrous oxide and HTPB as the oxidizer and fuel, respectively, in the proposed study. In addition, aerodynamics optimization of a rocket and 6-DOF flight trajectory prediction are both important subjects for a successful rocket system development, which will be addressed in this proposed subproject. Thus, we would like to propose a 3-year sub-project with three major objectives, which include: 1) to support the hybrid propulsion subsystem development as proposed in the integrated project, entitled “Development of an Advanced Multifunctional Hybrid Rocket�, 2) to explore several important fundamental reacting/non-reacting flow problems associated with hybrid rocket propulsion/aerodynamics through simulations and/or experiments, and 3) to conduct several inter-disciplinary researches that are critical to a success of the mission. In summary, we would like propose the following tasks in the 3-year period: � In the 1st year:  To deliver a single-stage, single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >300 kgf and thrust control.  To explore the complex reacting flow phenomena caused by the vortex clustering mixing enhancer through parallel 3D CFD simulations and to compare with ground thrust experiments.  To explore the complex transient phenomena in a model LITVC system by CFD simulations.  To understand the transient response of thrust control through valve throttling by ground experiments by collaborating with Subproject III (avionics and flight control).  To build up the aerodynamics database for fin-body configuration (single stage) using component building up model. � In the 2nd year:  To deliver a single-stage, single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >500 kgf and thrust control.  To further explore the complex reacting flow phenomena of proposed the vortex clustering mixing enhancer through parallel 3D CFD simulations and to compare with ground thrust experiments.  To understand the complex transient phenomena in a full-scale LITVC system by CFD simulations.  To conduct ground tests to validate the simulations of model LITVC system in the 1st year.  To conduct hybrid aerodynamics design (single-stage), wing-body-fin configuration design (two-stage) and CFD simulations to study the interaction between wings and fins. � In the 3rd year:  To deliver a two-stage single-port hybrid propulsion subsystem with a mixing enhancer for real flight test with thrust >1000 kgf for the 1st stage and thrust control, while the thrust of the 2nd leaves TBD.  To validate full-scale LITVC system by ground tests (no real-flight test because of safety concern).  To conduct CFD flow simulations of stage separation for the two-stage rocket and to recommend the ignition sequence of the second stage. | en_US |
dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 混合式火箭推進 | zh_TW |
dc.subject | 計算流體力學 | zh_TW |
dc.subject | 燃燒 | zh_TW |
dc.subject | 氣動力學 | zh_TW |
dc.subject | hybrid rocket propulsion | en_US |
dc.subject | computational fluid dynamics | en_US |
dc.subject | combustion | en_US |
dc.subject | aerodynamics | en_US |
dc.title | 混合式火箭前瞻推進次系統發展及空氣動力優化研究與發展 | zh_TW |
dc.title | Development of an Advanced Propulsion Subsystem and Aerodynamics Optimization for a Hybrid Rocket | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 國立交通大學機械工程學系(所) | zh_TW |
Appears in Collections: | Research Plans |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.