标题: 电脑动画中高效率骨架动作压缩技术之研究
Efficient Skeletal Motion Compression in Computer Animation
作者: 林奕成
LIN I-CHEN
国立交通大学资讯工程学系(所)
关键字: 人物角色动画;动态捕捉;资料压缩;动作分段;character animation;motion capture;data compression;motion segmentation
公开日期: 2010
摘要: 在人物动画合成中,动态捕捉技术已成为获得拟真动作最直接也有效的方法。随着与日遽增的动作资料,如何有效的储存与压缩动作资料,变成了迫切需求之多媒体处理技术。目前之骨架动作压缩技术,虽然获得不错的压缩比率。但是对于人物细微转折等特性资料较难保存,此外,近来提出较高压缩倍数的演算法,需利用到数值最佳化逼近目标函数以解码,对于即时应用较不适用。
本计画以两年的时间,研发新的动作分段与压缩技术。我们预期将更进一步的利用动作资料中时间与空间的相依性,并且更精准地分割重复性动作,以进一步提高压缩率,并减少近似动作之失真率。并且达到超过即时运算速度需求的压缩与解压缩执行效率。
除了针对单一动作资料串,本计画并发展对于动作资料库之压缩技术以及利用多执行绪平行处理。当用于即时互动应用中(如三维游戏),可大幅增进记忆体的使用弹性,并且提升人物动作合成之拟真与变化性。
In computer animation, motion capture has become the most straightforward and the most effective approach to acquire realistic motions. However, after more and more motion data are acquired, how to efficiently store or compress the motion data becomes an urgent issue.
Recently, several compression methods are proposed for skeletal motions and are of significant compression ratios. Nevertheless, detailed transitions or distinct postures may not be preserved with their spline approximation. Besides, the methods with significantly high compression ratio use run-time optimization and are not adequate to current real-time applications.
In the proposed project, we plan to develop a novel motion compression method in two years. We’ll further utilize the spatial and temporal coherence to improve the efficiency of approximation. Besides, we also plan to research on segmentation of short-term repetitive motions and motion comparisons. The proposed method will further improve the compression ratios and preserve the motion details as well.
The proposed compression method, through multi-threading programming, can be applied to motion database compression with high computational performance. When applying to real-time interactive applications (e.g. 3D games), the flexibility of memory usages will dramatically increase.
官方说明文件#: NSC99-2221-E009-136
URI: http://hdl.handle.net/11536/100712
https://www.grb.gov.tw/search/planDetail?id=2118343&docId=338909
显示于类别:Research Plans