完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Kuang-Huien_US
dc.contributor.authorShih, Chih-Wenen_US
dc.date.accessioned2014-12-08T15:13:03Z-
dc.date.available2014-12-08T15:13:03Z-
dc.date.issued2007-12-01en_US
dc.identifier.issn0899-7667en_US
dc.identifier.urihttp://dx.doi.org/10.1162/neco.2007.19.12.3392en_US
dc.identifier.urihttp://hdl.handle.net/11536/10071-
dc.description.abstractA general methodology that involves geometric configuration of the network structure for studying multistability and multiperiodicity is developed. We consider a general class of nonautonomous neural networks with delays and various activation functions. A geometrical formulation that leads to a decomposition of the phase space into invariant regions is employed. We further derive criteria under which the n-neuron network admits 2(n) exponentially stable sets. In addition, we establish the existence of 2(n) exponentially stable almost periodic solutions for the system, when the connection strengths, time lags, and external bias are almost periodic functions of time, through applying the contraction mapping principle. Finally, three numerical simulations are presented to illustrate our theory.en_US
dc.language.isoen_USen_US
dc.titleMultiple almost periodic solutions in nonautonomous delayed neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1162/neco.2007.19.12.3392en_US
dc.identifier.journalNEURAL COMPUTATIONen_US
dc.citation.volume19en_US
dc.citation.issue12en_US
dc.citation.spage3392en_US
dc.citation.epage3420en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000250751900012-
dc.citation.woscount9-
顯示於類別:期刊論文