完整後設資料紀錄
DC 欄位語言
dc.contributor.authorDing, Ing-Jren_US
dc.date.accessioned2014-12-08T15:13:10Z-
dc.date.available2014-12-08T15:13:10Z-
dc.date.issued2007-11-01en_US
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.patcog.2007.01.027en_US
dc.identifier.urihttp://hdl.handle.net/11536/10160-
dc.description.abstractThis paper presents a fuzzy control mechanism for conventional maximum likelihood linear regression (MLLR) speaker adaptation, called FLC-MLLR, by which the effect of MLLR adaptation is regulated according to the availability of adaptation data in such a way that the advantage of MLLR adaptation could be fully exploited when the training data are sufficient, or the consequence of poor MLLR adaptation would be restrained otherwise. The robustness of MLLR adaptation against data scarcity is thus ensured. The proposed mechanism is conceptually simple and computationally inexpensive and effective; the experiments in recognition rate show that FLC-MLLR outperforms standard MLLR especially when encountering data insufficiency and performs better than MAPLR at much less computing cost. (c) 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectspeech recognitionen_US
dc.subjectspeaker adaptationen_US
dc.subjecthidden Markov modelen_US
dc.subjectmaximum likelihood linear regressionen_US
dc.subjectT-S fuzzy logic controlleren_US
dc.titleIncremental MLLR speaker adaptation by fuzzy logic controlen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patcog.2007.01.027en_US
dc.identifier.journalPATTERN RECOGNITIONen_US
dc.citation.volume40en_US
dc.citation.issue11en_US
dc.citation.spage3110en_US
dc.citation.epage3119en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000248468800020-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. 000248468800020.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。