Full metadata record
DC FieldValueLanguage
dc.contributor.author符麥克en_US
dc.contributor.authorFUCHS MICHAELen_US
dc.date.accessioned2014-12-13T10:49:33Z-
dc.date.available2014-12-13T10:49:33Z-
dc.date.issued2009en_US
dc.identifier.govdocNSC98-2115-M009-009zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/101679-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=1874099&docId=309000en_US
dc.description.abstract摘要:近來的研究文獻,H. Nakada and R. Natsui 在正規Laurent 級數域上考慮─ 沒有互質條件下的丟番圖逼近(Diophantine approximation),得到其解的個數滿足 強大數法則。利用早先W. M. Schmidt 所提出的方法,他們的結果是非常可能有 相當程度地增進。在這個計畫中,我們將在非齊次丟番圖逼近、有限丟番圖逼近 及同時丟番圖逼近,研究類似的問題,並發展出較增進的結果。zh_TW
dc.description.abstractAbstract. In a recent paper, H. Nakada and R. Natsui considered the Diophantine approximation problem in the field of formal Laurent series without the coprimeness condition and obtained a strong law of large numbers for the number of solutions. By using an old method due to W. M. Schmidt, it is very likely that their result can be considerable improved. In this project, we intend to work out such an improvement as well as investigate similar questions for inhomogeneous Diophantine approximation, restricted Diophantine approximation, and simultaneous Diophantine approximation.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject正規 Laurent 級數域zh_TW
dc.subject非阿基米德丟番圖逼近zh_TW
dc.subject賦距丟番圖逼近zh_TW
dc.subject強大數法則zh_TW
dc.subjectFormal Laurent seriesen_US
dc.subjectnon-Archimedean Diophantine approximationen_US
dc.subjectmetric Diophantineapproximationen_US
dc.subjectstrong laws of large numbersen_US
dc.title正特徵域上丟番圖逼近的賦距結果zh_TW
dc.titleMetrical Results for Diophantine Approximation in Positive Characteristicen_US
dc.typePlanen_US
dc.contributor.department國立交通大學應用數學系(所)zh_TW
Appears in Collections:Research Plans


Files in This Item:

  1. 982115M009009.PDF

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.