完整後設資料紀錄
DC 欄位語言
dc.contributor.author吳慶堂en_US
dc.contributor.authorWu Ching-Tangen_US
dc.date.accessioned2014-12-13T10:49:34Z-
dc.date.available2014-12-13T10:49:34Z-
dc.date.issued2009en_US
dc.identifier.govdocNSC98-2115-M009-006zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/101687-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=1881302&docId=310696en_US
dc.description.abstract弱布朗運動為一其k 次邊際分佈與布朗運動之k 次邊際分佈相同之隨機過程. Stoyanov 於 1987 年提出此隨機過程並不需為布朗運動的猜測, 而Föllmer-Wu-Yor 則於2000 年解決 了這個問題. 在此研究計畫中, 我們主要是想解決一些弱布朗運動的open problems, 例如二次與三次弱布朗運動的quadratic variation 的值的問題. 另外, 弱布朗運動在財務數 學上的應用亦是我們有興趣的問題.zh_TW
dc.description.abstractA weak Brownian motion of order k is a stochastic process whose k-dimensional marginal is identical with that of a standard Brownian motion. A weak Brownian motion is not necessary to be a Brownian motion. This was a conjecture appeared in Stoyanov (1987) and solved in Föllmer-Wu-Yor (2000). In this project we aim to solve some open problems in the weak Brownian motion, for example, the value of the quadratic variation of weak Brownian motion of order 2 and 3. Furthermore, we want to discuss the applications of the weak Brownian motion in finance.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject布朗運動zh_TW
dc.subject弱布朗運動zh_TW
dc.subject邊際分佈zh_TW
dc.subjectBrownian motionen_US
dc.subjectweak Brownian motionen_US
dc.subjectmarginal distributionen_US
dc.title弱布朗運動及其應用zh_TW
dc.titleWeak Brownian Motion and Its Applicationsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學應用數學系(所)zh_TW
顯示於類別:研究計畫


文件中的檔案:

  1. 982115M009006.PDF

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。