标题: | 氮化铟及高铟组成氮化镓铟量子点及相关异质微结构之光电物理行为研究 Optical and Electrical Characterization of Inn and In-Rich Ingan Quantum Dots and Heterojunction Micro-Structures |
作者: | 陈卫国 CHEN WEI-KUO 国立交通大学电子物理学系(所) |
关键字: | 氮化铟;量子点;拉曼光谱;近场光学;InN;quantum dot;Raman spectroscopy;near-field optical microscopy |
公开日期: | 2008 |
摘要: | 由于 InN 材料具有高载子迁移率、低能隙值与高△Ec 值,使得InN 材料之 运用可以包括高速、高频电子元件、1.3-1.55 μm 之光通讯元件及高温度、高功 率稳定性之光电元件制作。此外在InGaN 合金材料中经由适当调配其固相组成 比例,将可以获得发光波长范围涵盖紫外光、可见光到远红外线波段,未来极有 潜力运用于全彩白光固态光源之制作。另一方面,InGaN 合金光电元件可有效 的将太阳光的红外至紫外光完整频谱转换成电流,可望成为有史以来最具效能、 坚固且相对上廉价的太阳能材料。因此InN 及InGaN 材料目前已经引起了产业 界、世界各学术研究单位竞相投入研究发展之材料。 迄今本实验室累积了多年在 III 族氮化物上的研究经验,目前已有初步的研 究成果,包含已达世界最高之载子迁移率1300 cm2/Vs,萤光光谱半高宽值达70 meV 的InN 薄膜;组成变化由60%至95%之高In 组成InGaN 奈米粒,发光波长 涵盖1.1~1.6 μm;发光谱峰在1.07 eV、高度6 nm 具有量子效应之InN 奈米粒等, 然而这些初步成果相较于其他III-V 族材料如GaN 或InAs 材料,仍有很大的改 善空间,例如半高宽可以提升至30 meV,电子迁移率可朝理论值的4400 cm2/Vs 推进等,而其关键仍在于反应腔之设计。有鉴于此,本计划将从新设计组装一适 合低温成长InN 与高In 组成InGaN 材料又兼具高温成长高品质GaN 材料之反应 腔体以进一步提升薄膜品质。 基于本研究团队多年来在于三—五族材料磊晶及光电研究之成果及经验 上,依据上述初步成果,研究InN 及In-rich InGaN 奈米点温度相关之类S-shaped 机制研究、高铟组成薄膜载子局域态研究、高密度奈米点间激子传输效应、奈米 点量子局限效应、薄膜及奈米结构之介面应力与压电场效应、多重波长堆叠结构 之载子偶合特性研究及InN 单光子光源时间相关特性研究。 Because of the high carrier mobility, low energy gap, and high conduction-band offset of InN material, its application is suitable for opto-electrcal devices, such as high speed and frequency transistor, optical communication device operated at 1.3-1.55 μm, and high power and high temperature device. In addition, by modifying alloy composition inside InGaN, the emission wavelength would range from UV to far infrared, which has great potential for full-color white light source. This material is also capable for transfer solar spectrum, from UV to infrared, to current signal and become the most efficient, reliable, and cheep candidate for solar cell. Thus many industries and laboratories rush for studying the properties of InN and InGaN material recently. Up to date, our laboratory has many experiences on III-nitride study, such as InN films with the highest mobility value 1300 cm2/V-s and the FWHM of PL emission with 70 meV, the In-rich InGaN nano-particles emitted from 1.1~1.6 μm, and the InN nano-particle with 6nm height and 1.07eV emission. However, these primary results can still be improved. We expect the FWHM would be lower to 30 meV and the mobility be approached to 4000 cm2/V-s as theoretical calculation. The critical factor of the improvement is considered as the design and modification of reactor. We thus design a new MOCVD chamber that is suitable for low-temperature growth of InN and In-rich InGaN, as well as for high-temperature growth of GaN films to increase films quality. According to preliminary results, the mainly research topics are focus on the mechanism of InN and In-rich InGaN quantum dots temperature-dependence S-shaped like behavior, localization effect of In-rich InGaN films, carrier transportation effect between dots for high dot density of InN and In-rich InGaN, quantum dot confinement effect, interface strain and piezoelectric effect of InN and In-rich InGaN films and dots, multi-wavelength and multi-stack carrier coupling properties of dots, and InN single photon source time correlation studies. |
官方说明文件#: | NSC95-2112-M009-044-MY3 |
URI: | http://hdl.handle.net/11536/101969 https://www.grb.gov.tw/search/planDetail?id=1592104&docId=273078 |
显示于类别: | Research Plans |