Full metadata record
DC FieldValueLanguage
dc.contributor.authorWoolbright, DEen_US
dc.contributor.authorFu, HLen_US
dc.date.accessioned2014-12-08T15:01:12Z-
dc.date.available2014-12-08T15:01:12Z-
dc.date.issued1998en_US
dc.identifier.issn1063-8539en_US
dc.identifier.urihttp://hdl.handle.net/11536/101-
dc.description.abstractA 1-factor of a graph G = (V,E) is a collection of disjoint edges which contain all the vertices of V. Given a 2n - 1 edge coloring of K-2n, n greater than or equal to 3, we prove there exists a 1-factor of K-2n whose edges have distinct colors. Such a 1-factor is called a "Rainbow." (C) 1998 John Wiley & Sons, Inc.en_US
dc.language.isoen_USen_US
dc.subject1-factoren_US
dc.subject1-factorizationen_US
dc.subjectedge coloringen_US
dc.subjectrainbowen_US
dc.titleOn the existence of rainbows in 1-factorizations of K-2nen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF COMBINATORIAL DESIGNSen_US
dc.citation.volume6en_US
dc.citation.issue1en_US
dc.citation.spage1en_US
dc.citation.epage20en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000071047200001-
dc.citation.woscount14-
Appears in Collections:Articles


Files in This Item:

  1. 000071047200001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.