Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Woolbright, DE | en_US |
dc.contributor.author | Fu, HL | en_US |
dc.date.accessioned | 2014-12-08T15:01:12Z | - |
dc.date.available | 2014-12-08T15:01:12Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.issn | 1063-8539 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/101 | - |
dc.description.abstract | A 1-factor of a graph G = (V,E) is a collection of disjoint edges which contain all the vertices of V. Given a 2n - 1 edge coloring of K-2n, n greater than or equal to 3, we prove there exists a 1-factor of K-2n whose edges have distinct colors. Such a 1-factor is called a "Rainbow." (C) 1998 John Wiley & Sons, Inc. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 1-factor | en_US |
dc.subject | 1-factorization | en_US |
dc.subject | edge coloring | en_US |
dc.subject | rainbow | en_US |
dc.title | On the existence of rainbows in 1-factorizations of K-2n | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF COMBINATORIAL DESIGNS | en_US |
dc.citation.volume | 6 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 1 | en_US |
dc.citation.epage | 20 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000071047200001 | - |
dc.citation.woscount | 14 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.