完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWoolbright, DEen_US
dc.contributor.authorFu, HLen_US
dc.date.accessioned2014-12-08T15:01:12Z-
dc.date.available2014-12-08T15:01:12Z-
dc.date.issued1998en_US
dc.identifier.issn1063-8539en_US
dc.identifier.urihttp://hdl.handle.net/11536/101-
dc.description.abstractA 1-factor of a graph G = (V,E) is a collection of disjoint edges which contain all the vertices of V. Given a 2n - 1 edge coloring of K-2n, n greater than or equal to 3, we prove there exists a 1-factor of K-2n whose edges have distinct colors. Such a 1-factor is called a "Rainbow." (C) 1998 John Wiley & Sons, Inc.en_US
dc.language.isoen_USen_US
dc.subject1-factoren_US
dc.subject1-factorizationen_US
dc.subjectedge coloringen_US
dc.subjectrainbowen_US
dc.titleOn the existence of rainbows in 1-factorizations of K-2nen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF COMBINATORIAL DESIGNSen_US
dc.citation.volume6en_US
dc.citation.issue1en_US
dc.citation.spage1en_US
dc.citation.epage20en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000071047200001-
dc.citation.woscount14-
顯示於類別:期刊論文


文件中的檔案:

  1. 000071047200001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。