標題: | 無刷永磁馬達無感測控制系統晶片設計技術之發展 Development of System-on-a-Chip Digital Control Technology for Sensorless Control of Permanent-Magnet Synchronous Motor Drives with Sensorless Power Factor Correction Control |
作者: | 鄒應嶼 TZOU YING-YU 國立交通大學電機與控制工程學系(所) |
關鍵字: | 永磁同步馬達無感測控制;馬達控制IC設計;無感測功因控制;系統晶片;智慧產權;電源通訊;PMSM motor sensorless control;motor control IC;sensorless PFC;system-on-a-chip;power line communication |
公開日期: | 2008 |
摘要: | 隨著家庭自動化、白色家電、汽車電子化的發展,調速變頻器將扮演更為廣
泛且重要的角色,本計畫擬整合馬達控制技術、電力電子技術、與可程式系統晶
片設計IC設計技術,建立以IC設計為導向的馬達驅動IC設計平台,發展相關馬達
控制IP,研製一個具有功率因數修正功能可應用於永磁同步馬達的無感測控制晶
片,可應用於跑步機、壓縮機、調速主軸驅動器等。本研究將以1 HP的永磁同步
馬達為對象,發展具有高效率、高功因特性的可調速無感測馬達控制晶片。本研
究整合數位電源控制與數位馬達控制的系統晶片設計與實現技術,研究計畫共計
三年,各階段的主要研究摘要分述於後:
第一年:數位式Sensorless VOPFC控制IC之設計與實現
本階段主要目標在於建立一個以新型FPGA&DSP為核心的數位電源與馬達
控制系統晶片設計平台,同時以此為基礎設計一個應用於馬達驅動器的數位式可
調輸出電壓功率因數控制IC。傳統的PFC控制架構需要一個輸入電源的電壓感測
器、一個線電流感測器、以及一個輸出直流電壓感測器。在PFC轉換器中的電流
感測器必須採用隔離式的,若以current shunt檢測電流,其共模雜訊很大,會大
幅降低回授信號的品質,採用電流感測器同時也增加了系統的成本。本階段將發
展不需要線電流感測器的無感測PFC控制方法,發展PFC轉換器的線電流估計模
型,探討數位式VOPFC的控制架構,本研究將利用數位控制的優點提出一種精簡
的可程式(programmable)與可組合式(configurable)的整合式電源與馬達控制架構,
發展單相市電PFC轉換器的無感測控制方法,使其可應用於馬達驅動之前級電
源,並完成實現驗證。
第二年:數位式無刷同步馬達Sensorless Motor IC之設計與實現
目前永磁同步馬達的無感測控制方法,主要可分為兩類,一類是以馬達模型
為基礎的轉速估測法,另一類是以信號注入為基礎的轉速估測法。前者在低轉速
時,由於信號雜訊比的降低,難以改善其性能與可靠度;後者在高轉速時,由於
反抗電動勢的增加,而降低了信號雜訊比。為了克服此一問題,本計畫將提出一
種以訊號處理技術為基礎的編碼信號注入鎖相迴路轉子位置估計方法,藉由轉子磁場的變化,偵測調變波之相角變化,藉此估計轉子位置。本研究將發展以數位
信號處理為基礎的編碼與解碼方法,用於定子信號之注入與檢出,藉此估測轉子
位置,並發展其晶片實現方法。為了驗證本計畫所提出的方法,將採用整合
ModelSim與Simulink模擬軟體進行包含馬達、功率級與信號處理的模擬與分析,
並完成電路設計實現驗證。
第三年:具有PLC介面之Sensorless 無刷同步馬達控制系統晶片之設計與實現
本階段將整合前兩年之研究成果,發展數位電源控制與數位馬達控制的
SOPC cell library與嵌入式DSP即時多工控制軟體,特別著重於本計畫所發展之永
磁同步馬達的無感測控制所需要使用的IC設計智權,研究將著重於以積體電路實
現為導向的電路設計、同步電流取樣電路設計、數位式PWM產生電路、電流注
入數位編碼信號產生器與解碼電路。本計畫同時將整合電源線通訊(PLC)晶片,
完成具有PLC介面的系統整合實驗。
綜合而言,為了落實數位馬達控制技術的發展,本計畫將以永磁同步馬達無
感測驅動器為對象,整合馬達控制技術、電力電子技術、數位信號處理技術、與
電源線通訊技術、與SOPC晶片設計技術,發展數位馬達控制的可程式系統晶片
設計方法。 In forecasting the future development of wide applications of sensorless adjustable brushless permanent-magnet motors in home automation and information appliances, this project focusing on the development key technology needed in the design of system-on-a-programmable-chip (SOPC) for modern smart motor drives. This project makes a research on the design and implementation of a FPGA-DSP based sensorless PFC control sensorless speed control of adjustable brushless motor drives. The combination of the power factor control and PWM inverter control can greatly simplify the control circuitry for a motor drive with unit power factor and high efficiency. The abstract of this three-year project is described as follows: The 1st-year: Design and Realization of a Digital Sensorless Variable-Output Power Factor Correction Control IC for Sensorless PMSM Drives During the first year of this project we will focus on the realization of the SOPC design platform for digital motor control and make a study on control architectures suitable for the PFC AC-DC converter and PWM DC-AC inverter combination control scheme of a sensorless motor drive. A digital programmable PFC-PWM control scheme will be proposed in applications to single-phase adjustable speed sensorless brushless PM motor drive with unit power factor. Numerical realization issues for the sensorless power factor control algorithm will be studied. Simulation-oriented analysis will be carried out to study the feasibility of the proposed control scheme. Experimental verification will be carried out using a designed FPGA&DSP-based programmable digital controller. The 2nd-year: Design and Implementation of a Digital Sensorless Control IC for Permanent-Magnet Synchronous Motors In the second year of this project we will develop an FPGA realizable digital control scheme for the sensorless speed control of permanent magnet synchronous motor with nonsailent poles. The low-speed sensorless control techniques developed for PMSM can be classified into two categories: one is the model-based rotor position estimation scheme and the other is the signal injection rotor position estimation scheme. The measured phase current and back emf will be used for the estimation of rotor flux synchronization signals. A digital phase-locked loop technique will be used to synchronize the phase-commutation signals for rotor position control. Fixed-point realization of the sensorless estimation scheme will be studied. Computer simulation and FPGA&DSP realization will be carried out to verify the proposed sensorless position estimation scheme. The 3rd-year: Design and Implementation of a SOPC Sensorless Control IC with Sensorless Unit Power Factor Control This research will make an integration of the previous two-year research results to develop a systematic design approach for the design of SOPC sensorless motor control IC with sensorless unit power factor. The designed SOPC will also provide power line communication interface to facilitate the interface for home automation. Simulation oriented analysis and design will be used in the synthesis of this SOPC based digital power and motor control IC. A systematic design procedure will be developed for the design and implementation of SOPC IC design for sensorless motor drives. In summary, this project will develop SOPC based systematic design platform and methodology for the design of digital power and motor control chips for the sensorless control of PM synchronous motor drives with unit power factor control. We try to unify the design of digital power control and digital motor using the advanced system-on-a-programmable-chip (SoPC) technology. The developed technology will be used for the development of an intelligent integrated motor drive. The carry out of this project is beneficial to the development of advanced digital motor and power control techniques. |
官方說明文件#: | NSC95-2221-E009-338-MY3 |
URI: | http://hdl.handle.net/11536/102134 https://www.grb.gov.tw/search/planDetail?id=1586114&docId=271866 |
Appears in Collections: | Research Plans |