標題: 生物奈米材料共軛物之合成及分析並應用到生醫感測領域
Synthesis and Analysis of Nanomaterial-Biomolecule Conjugate for Biomedical Sensing Application
作者: 柯富祥
KO FU-HSIANG
國立交通大學材料科學與工程學系(所)
關鍵字: 奈米微粒;生物分子辨識;生醫感測;酵素活性;側流分析法;Nanoparticles;biomolecular recognition;biosensing;enzyme activity;lateral flow analysis
公開日期: 2014
摘要: 針對生化分子分析的應用,奈米微粒是一種非常重要的平台。奈米微粒雖然被廣泛的應用在in vivo與in vitro的研究中,但是對於此材料的生物效應仍有許多未知的地方,因此對於此新穎材料的基礎研究仍有許多的空間。本三年期計畫(2012/8~2015/7)擬合成生物奈米材料共軛物,並以溫度、尺寸、pH、離子強度等方式來操控這些分子並將其應用到生物分子辨認及生醫感測領域。本計畫可以分為兩個部份,包括奈米微粒與生物分子共軛物之交互作用並調控酵素活性、與奈米微粒應用到生物樣品之金屬離子分析。在第一部份研究中,我們研究團隊將以不同尺度之奈米微粒來操控酵素分子之活性。此部份研究我們團隊已經有相當的研究經驗,除了繼續深入瞭解其動力學參數與理論模式外,我們也將派博士後研究員到國外著名酵素研究團隊進行在水膠過程之酸鹼度、離子強度、與溫度等重要調控參數之研究,並應用到細胞與組織上。針對研究計畫的第二個部份,我們會發展出側流分析法的軟性試紙晶片來測定汞離子,並將此低成本、快速、且靈敏的分析法與台大醫院新竹分院合作進行真實樣品測定研究。
Nanoparticles demonstrate a highly attractive platform for a variety of biochemical applications. Nanoparticles have already been used for a wide range of in vitro and in vivo applications. Full realization of their potential, however, requires addressing a number of open issues, including acute and long-term health effects of nanomaterials as well as scalable, reproducible manufacturing methods and reliable metrics for characterization of these materials. The properties of nanoparticle-based systems can be engineered for individual and multimodal applications, including biomolecular recognition and biosensing as raised in this project. In the three-year proposal, we focus on two major areas of nanoparticle-biomolecule conjugate application, i.e. (i) Nanoparticle–Biomolecule Interactions for the Modulation of Enzyme Activity, and (ii) Nanoparticles in Biosensing for the Detection of Metal Ions. As to the first aim of this program, we will verify the activity of the enzyme is tunable by means of linker-free assembly of enzyme onto NPs. We will study the kinetic responses of the enzyme-functionalized NPs and theoretical model designed to explain the correlation between various effects of temperature, ionic strength, size and pH. Some important and decisive parameters such as pH value, ionic strength and reaction temperature will work together with excellent foreign team to understand the hydrogelation process and mechanism. As to the second aim for this project, we want to design the poly-thymine DNA functionalized AuNP probes that could protect the AuNPs from aggregating in the salinity solutions and employed the lateral flow analysis (LFA) to detect the Hg2+ without complicated instrumentations and technical expertise for future practical application. The disposable LFA sensor thus provides a low-cost, convenient, rapid, sensitive, and quantitative tool for the detection of biomolecular samples.
官方說明文件#: NSC101-2113-M009-007-MY3
URI: http://hdl.handle.net/11536/102418
https://www.grb.gov.tw/search/planDetail?id=8113839&docId=430554
Appears in Collections:Research Plans