完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorHuang, Chao-Huien_US
dc.contributor.authorChen, Shi-Anen_US
dc.date.accessioned2014-12-08T15:13:16Z-
dc.date.available2014-12-08T15:13:16Z-
dc.date.issued2007-10-01en_US
dc.identifier.issn1549-8328en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSI.2007.905647en_US
dc.identifier.urihttp://hdl.handle.net/11536/10255-
dc.description.abstractIn this paper, a biologically inspired, CNN-based, multi-channel, texture boundary detection technique is presented. The proposed approach is similar to human vision system. The algorithm is simple and straightforward such that it can be implemented on the cellular neural networks (CNNs). CNN contains several important advantages, such as efficient real-time processing capability and feasible very large-scale integration (VLSI) implementation. The proposed algorithm also had been widely tested on synthetic texture images. Those texture images are randomly selected from the Brodatz textures database [1]. According to our simulation results, the boundaries of uniform textures can be detected quite successfully. For the nonuniform or nonregular textures, the results also indicate meaningful properties, and the properties also are consistent to the human visual sensation. The proposed algorithm also has been implemented on the CNN Universal Machine (CNN-UM), and yields similar results as the simulation on the PC. Based on the efficient performance of CNN-UM, the algorithm becomes very fast.en_US
dc.language.isoen_USen_US
dc.subjectcellular neural networks (CNNs)en_US
dc.subjectearly vision systemen_US
dc.subjectGabor filteren_US
dc.subjectretinex modelen_US
dc.subjecttexture segregationen_US
dc.titleCNN-based hybrid-order texture segregation as early vision processing and its implementation on CNN-UMen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSI.2007.905647en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERSen_US
dc.citation.volume54en_US
dc.citation.issue10en_US
dc.citation.spage2277en_US
dc.citation.epage2287en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000250315100017-
dc.citation.woscount5-
顯示於類別:期刊論文


文件中的檔案:

  1. 000250315100017.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。