完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHo, Shinn-Yingen_US
dc.contributor.authorHsieh, Chih-Hungen_US
dc.contributor.authorYu, Fu-Chiehen_US
dc.contributor.authorHuang, Hui-Lingen_US
dc.date.accessioned2014-12-08T15:13:17Z-
dc.date.available2014-12-08T15:13:17Z-
dc.date.issued2007-10-01en_US
dc.identifier.issn1545-5963en_US
dc.identifier.urihttp://dx.doi.org/10.1109/tcbb.2007.1051en_US
dc.identifier.urihttp://hdl.handle.net/11536/10265-
dc.description.abstractFrom gene expression profiles, it is desirable to rebuild cellular dynamic regulation networks to discover more delicate and substantial functions in molecular biology, biochemistry, bioengineering, and pharmaceutics. The S-system model is suitable to characterize biochemical network systems and capable of analyzing the regulatory system dynamics. However, the inference of an S-system model of N-gene genetic networks has 2N(N+1) parameters in a set of nonlinear differential equations to be optimized. This paper proposes an intelligent two-stage evolutionary algorithm (iTEA) to efficiently infer the S-system models of genetic networks from time-series data of gene expression. To cope with the curse of dimensionality, the proposed algorithm consists of two stages, where each uses a divide-and-conquer strategy. The optimization problem is first decomposed into N subproblems having 2(N+1) parameters each. At the first stage, each subproblem is solved using a novel intelligent genetic algorithm (IGA) with intelligent crossover based on an orthogonal experimental design (OED). At the second stage, the obtained N solutions to the N subproblems are combined and refined using an OED-based simulated annealing algorithm for handling noisy gene expression profiles. The effectiveness of iTEA is evaluated using simulated expression patterns with and without noise running on a single-processor PC. It is shown that 1) IGA is efficient enough to solve subproblems, 2) IGA is significantly superior to the existing method GA with simplex crossover (SPXGA), and 3) iTEA performs well in inferring S-system models for dynamic pathway identification.en_US
dc.language.isoen_USen_US
dc.subjectdivide and conqueren_US
dc.subjectevolutionary algorithmen_US
dc.subjectgenetic networken_US
dc.subjectorthogonal experimental designen_US
dc.subjectpathway identificationen_US
dc.subjectS-system modelen_US
dc.titleAn intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profilesen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/tcbb.2007.1051en_US
dc.identifier.journalIEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICSen_US
dc.citation.volume4en_US
dc.citation.issue4en_US
dc.citation.spage648en_US
dc.citation.epage660en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000250516700014-
dc.citation.woscount31-
顯示於類別:期刊論文


文件中的檔案:

  1. 000250516700014.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。