Full metadata record
DC FieldValueLanguage
dc.contributor.authorGe, Zheng-Mingen_US
dc.contributor.authorOu, Chan-Yien_US
dc.date.accessioned2014-12-08T15:13:17Z-
dc.date.available2014-12-08T15:13:17Z-
dc.date.issued2007-10-01en_US
dc.identifier.issn0960-0779en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.chaos.2005.11.059en_US
dc.identifier.urihttp://hdl.handle.net/11536/10271-
dc.description.abstractin this paper, the chaotic behaviors in a fractional order modified Duffing system are studied numerically by phase portraits, Poincare maps and bifurcation diagrams. Linear transfer function approximations of the fractional integrator block are calculated for a set of fractional orders in (0, 1], based on frequency domain arguments. The total system orders found for chaos to exist in such systems are 1.8, 1.9, 2.0 and 2.1. (c) 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleChaos in a fractional order modified Duffing systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.chaos.2005.11.059en_US
dc.identifier.journalCHAOS SOLITONS & FRACTALSen_US
dc.citation.volume34en_US
dc.citation.issue2en_US
dc.citation.spage262en_US
dc.citation.epage291en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000247022100011-
dc.citation.woscount58-
Appears in Collections:Articles


Files in This Item:

  1. 000247022100011.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.