标题: 幂次非线性薛丁格方程式之孤波解的研究
Study in Solitary Waves of the Nonlinear Schrodinger Equation with Power Nonlinearities
作者: 张书铭
Chang Shu-Ming
国立交通大学应用数学系(所)
关键字: 非线性薛丁格方程式;孤波解;Nonlinear Schrodinger;Solitary Waves.
公开日期: 2008
摘要: 非线性薛丁格方程式是与相当多的物理模型有关,包括非线性光学、水波与量子世界的描述等。本计画将针对具有幂次非线性项的薛丁格方程式进行探讨,欲瞭解不同型态的孤波解在此幂次非线性薛丁格方程式中的稳定状况。在藉由孤波解附近的线性化展开后,得到一线性算子,此一线性算子将扮演重要角色。对此线性算子求其谱分布,即是本计画所要关心的课题,并且要对其所对应的不同型态的孤波解做一一的分类与研究。
Nonlinear Schrodinger equations with focusing power nonlinearities have solitary wave solutions. The spectra of the linearized operators around these solitary waves are intimately connected to stability properties of the solitary waves, and to the long-time dynamics of solutions of nonlinear Schrodinger equations. In this project we hope to study these spectra in detail, both analytically and numerically. Such nonlinear Schrodinger equations arise in many physical settings, including nonlinear optics, water waves, and quantum physics. Mathematically, nonlinear Schrodinger equations with various nonlinearities are studied as basic models of nonlinear dispersive phenomena. In this project, we will stick to the case of a pure power nonlinearity for the sake of simplicity.
官方说明文件#: NSC97-2115-M009-003-MY2
URI: http://hdl.handle.net/11536/102797
https://www.grb.gov.tw/search/planDetail?id=1617329&docId=276510
显示于类别:Research Plans