标题: 随机树的边界子树数量
The Number of Subtrees on the Fringe of Random Trees
作者: 符麦克
FUCHS MICHAEL
国立交通大学应用数学系(所)
关键字: 演算法分析(Analysis of Algorithms);随机树(Random Trees);子树的数量(Number of Subtrees);极限分布(Limit Laws);Analysis of algorithms;random trees;number of subtrees;limit laws.
公开日期: 2007
摘要: 在最近的手稿中,我们证明了:给定一整数k,在随机递回树(Random
Recursive Trees)和随机二元搜寻树(Random Binary Search Trees)中大小为k 的边
界子树数量之极限分布,随着k 的改变,产生从常态分布(Normal Distribution)
到卜松分布(Poisson),最后变成退化分布(Degenerate)的相变。
在 Feng, Mahmoud 和 Panholzer 最近的论文中,也藉由完全不同的方法独立
地得到相同的结果。在本计划中,我们打算比较这两种方法。特别地,我们将说
明我们的方法依旧适用于 Feng 等人的方法难以处理,甚至无法处理的其他种类
似的随机树相变结果。
In a recent manuscript, we proved that the limit laws of the number of subtrees of
size k on the fringe of random recursive trees and random binary search trees undergo a phase
change from normal to Poisson and finally become degenerate when k varies. The same results
were independently obtained in a recent study of Feng, Mahmoud, and Panholzer by a completely
different approach. In this project, we intend to compare these two approaches. In particular, we
will demonstrate that our approach can also be applied to prove similar phase change results for
other classes of random trees, whereas the approach of Feng et al. either does not work in an
obvious way or is getting very cumbersome.
官方说明文件#: NSC96-2628-M009-012
URI: http://hdl.handle.net/11536/102914
https://www.grb.gov.tw/search/planDetail?id=1455940&docId=260416
显示于类别:Research Plans