Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, S.-L.en_US
dc.contributor.authorChien, C.-S.en_US
dc.contributor.authorJeng, B.-W.en_US
dc.date.accessioned2014-12-08T15:13:21Z-
dc.date.available2014-12-08T15:13:21Z-
dc.date.issued2007-09-10en_US
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jcp.2007.03.028en_US
dc.identifier.urihttp://hdl.handle.net/11536/10336-
dc.description.abstractWe present a novel algorithm for computing the ground-state and excited-state solutions of M-coupled nonlinear Schrodinger equations (MCNLS). First we transform the MCNLS to the stationary state ones by using separation of variables. The energy level of a quantum particle governed by the Schrodinger eigenvalue problem (SEP) is used as an initial guess to computing their counterpart of a nonlinear Schrodinger equation (NLS). We discretize the system via centered difference approximations. A predictor-corrector continuation method is exploited as an iterative method to trace solution curves and surfaces of the MCNLS, where the chemical potentials are treated as continuation parameters. The wave functions can be easily obtained whenever the solution manifolds are numerically traced. The proposed algorithm has the advantage that it is unnecessary to discretize or integrate the partial derivatives of wave functions. Moreover, the wave functions can be computed for any time scale. Numerical results on the ground-state and excited-state solutions are reported, where the physical properties of the system such as isotropic and nonisotropic trapping potentials, mass conservation constraints, and strong and weak repulsive interactions are considered in our numerical experiments. (C) 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBose-Einstein condensatesen_US
dc.subjectGross-Pitaevskii equationen_US
dc.subjectwave functionsen_US
dc.subjectLiapunov-Schmidt reductionen_US
dc.subjectcontinuationen_US
dc.subjectcentered difference methoden_US
dc.subjectdisken_US
dc.titleComputing wave functions of nonlinear Schrodinger equations: A time-independent approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jcp.2007.03.028en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL PHYSICSen_US
dc.citation.volume226en_US
dc.citation.issue1en_US
dc.citation.spage104en_US
dc.citation.epage130en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000249936500006-
dc.citation.woscount18-
Appears in Collections:Articles


Files in This Item:

  1. 000249936500006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.