完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Wen-Linen_US
dc.contributor.authorTung, Chun-Weien_US
dc.contributor.authorHuang, Hui-Lingen_US
dc.contributor.authorHwang, Shiow-Fenen_US
dc.contributor.authorHo, Shinn-Yingen_US
dc.date.accessioned2014-12-08T15:13:22Z-
dc.date.available2014-12-08T15:13:22Z-
dc.date.issued2007-09-01en_US
dc.identifier.issn0303-2647en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.biosystems.2007.01.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/10348-
dc.description.abstractAccurate prediction methods of protein subnuclear localizations rely on the cooperation between informative features and classifier design. Support vector machine (SVM) based learning methods are shown effective for predictions of protein subcellular and subnuclear localizations. This study proposes an evolutionary support vector machine (ESVM) based classifier with automatic selection from a large set of physicochernical composition (PCC) features to design an accurate system for predicting protein subnuclear localization, named ProLoc. ESVM using an inheritable genetic algorithm combined with SVM can automatically determine the best number m of PCC features and identify m out of 526 PCC features simultaneously. To evaluate ESVM, this study uses two datasets SNL6 and SNL9, which have 504 proteins localized in 6 subnuclear compartments and 370 proteins localized in 9 subnuclear compartments. Using a leave-one-out cross-validation, ProLoc utilizing the selected m = 33 and 28 PCC features has accuracies of 56.37% for SNL6 and 72.82% for SNL9, which are better than 51.4% for the SVM-based system using k-peptide composition features applied on SNL6, and 64.32% for an optimized evidence-theoretic k-nearest neighbor classifier utilizing pseudo amino acid composition applied on SNL9, respectively. (C) 2007 Elsevier Ireland Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectsubnuclear localizationen_US
dc.subjectsupport vector machineen_US
dc.subjectk-Nearest neighboren_US
dc.subjectpredictionen_US
dc.subjectamino acid compositionen_US
dc.subjectphysicochemical propertyen_US
dc.subjectgenetic algorithmen_US
dc.titleProLoc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition featuresen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.biosystems.2007.01.001en_US
dc.identifier.journalBIOSYSTEMSen_US
dc.citation.volume90en_US
dc.citation.issue2en_US
dc.citation.spage573en_US
dc.citation.epage581en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000250184500028-
dc.citation.woscount35-
顯示於類別:期刊論文


文件中的檔案:

  1. 000250184500028.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。