Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Teng, Yuan-Hsiang | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.date.accessioned | 2014-12-08T15:13:24Z | - |
dc.date.available | 2014-12-08T15:13:24Z | - |
dc.date.issued | 2007-09-01 | en_US |
dc.identifier.issn | 0028-3045 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/net.20184 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/10364 | - |
dc.description.abstract | The alternating group graph AG(n) is an interconnection network topology based on the Cayley graph of the alternating group. There are some interesting results concerning the hamiltonicity and the fault tolerant hamiltonicity of the alternating group graphs. In this article, we propose a new concept called panpositionable harniltonicity. A hamiltonian graph G is panpositionable if for any two different vertices x and y of G and for any integer I satisfying d(x, y) <= I <= vertical bar V(G)vertical bar - d(x, y), there exists a hamiltonian cycle C of G such that the relative distance between x, y on C is I. We show that AG(n) is panpositionable hamiltonian if n >= 3. (C) 2007 Wiley Periodicals, Inc. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | alternating group graph | en_US |
dc.subject | hamiltonian | en_US |
dc.subject | hamiltonian connected | en_US |
dc.subject | panpositionable hamiltonian | en_US |
dc.title | Panpositionable hamiltonicity of the alternating group graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/net.20184 | en_US |
dc.identifier.journal | NETWORKS | en_US |
dc.citation.volume | 50 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 146 | en_US |
dc.citation.epage | 156 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000248982700003 | - |
dc.citation.woscount | 10 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.