Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeng, Yuan-Hsiangen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:13:24Z-
dc.date.available2014-12-08T15:13:24Z-
dc.date.issued2007-09-01en_US
dc.identifier.issn0028-3045en_US
dc.identifier.urihttp://dx.doi.org/10.1002/net.20184en_US
dc.identifier.urihttp://hdl.handle.net/11536/10364-
dc.description.abstractThe alternating group graph AG(n) is an interconnection network topology based on the Cayley graph of the alternating group. There are some interesting results concerning the hamiltonicity and the fault tolerant hamiltonicity of the alternating group graphs. In this article, we propose a new concept called panpositionable harniltonicity. A hamiltonian graph G is panpositionable if for any two different vertices x and y of G and for any integer I satisfying d(x, y) <= I <= vertical bar V(G)vertical bar - d(x, y), there exists a hamiltonian cycle C of G such that the relative distance between x, y on C is I. We show that AG(n) is panpositionable hamiltonian if n >= 3. (C) 2007 Wiley Periodicals, Inc.en_US
dc.language.isoen_USen_US
dc.subjectalternating group graphen_US
dc.subjecthamiltonianen_US
dc.subjecthamiltonian connecteden_US
dc.subjectpanpositionable hamiltonianen_US
dc.titlePanpositionable hamiltonicity of the alternating group graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/net.20184en_US
dc.identifier.journalNETWORKSen_US
dc.citation.volume50en_US
dc.citation.issue2en_US
dc.citation.spage146en_US
dc.citation.epage156en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000248982700003-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000248982700003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.