標題: Optimal tool replacement for processes with low fraction defective
作者: Pearn, W. L.
Hsu, Ya-Chen
工業工程與管理學系
Department of Industrial Engineering and Management
關鍵字: quality management;critical value;process capability index;replacement time;tool wear
公開日期: 1-Aug-2007
摘要: Tool wear is a frequent and natural part in many machining processes and is a systematic assignable cause. The fraction of defectives would rise as the tool deteriorates. When the fraction defective reaches a certain level, the tool must be replaced. To minimize the defective parts and the overall tool costs, the optimal tool replacement time needs to be determined. Process capability indices (PCIs) have been effectively used in the manufacturing industry to measure the fraction of defectives. Conventional methods of capability measurement become inaccurate since the process data is contaminated by the assignable cause variation. In order to determine the optimal tool replacement time to maintain maximum product quality, conventional capability calculation must be modified. Considering process capability changes dynamically, an estimator of C-pmk is investigated. We obtain an exact form of the sampling distribution in the presence of a systematic assignable cause. This study provides an effective management policy for optimal tool replacement under low fraction of defectives. To illustrate the application of this procedure, a case study involving the tool wear problem is presented. (c) 2006 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.ejor.2006.05.030
http://hdl.handle.net/11536/10499
ISSN: 0377-2217
DOI: 10.1016/j.ejor.2006.05.030
期刊: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Volume: 180
Issue: 3
起始頁: 1116
結束頁: 1129
Appears in Collections:Articles


Files in This Item:

  1. 000245127200011.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.